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FIGURE 15.57 The equations 
υ( )=x g u,  and υ( )=y h u,  allow us to 

change an integral over a region R in the 
xy-plane into an integral over a region G in 
the υu -plane.
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Theory and Examples

 105. Vertical planes in cylindrical coordinates 

 a. Show that planes perpendicular to the x-axis have equations 
of the form θ=r a sec  in cylindrical coordinates.

 b. Show that planes perpendicular to the y-axis have equations 
of the form θ=r b csc .

 106. (Continuation of Exercise 105.) Find an equation of the form 
θ=r f ( ) in cylindrical coordinates for the plane ax by c,+ =  

c 0.≠

 107. Symmetry What symmetry will you find in a surface that has 
an equation of the form =r f z( ) in cylindrical coordinates? 
Give reasons for your answer.

 108. Symmetry What symmetry will you find in a surface that has 
an equation of the form ρ φ= f ( ) in spherical coordinates? Give 
reasons for your answer.

15.8 Substitutions in Multiple Integrals

This section introduces the ideas involved in coordinate transformations to evaluate 
multiple integrals by substitution. The method replaces complicated integrals by ones 
that are easier to evaluate. Substitutions accomplish this by simplifying the integrand, 
the limits of integration, or both. A thorough discussion of multivariable transforma-
tions and substitutions is best left to a more advanced course, but our introduction here 
shows how the substitutions just studied reflect the general idea derived for single 
integral calculus.

Substitutions in Double Integrals

The polar coordinate substitution of Section 15.4 is a special case of a more general substi-
tution method for double integrals, a method that pictures changes in variables as transfor-
mations of regions.

Suppose that a region G in the υu -plane is transformed into the region R in the  
xy-plane by equations of the form

υ υ( ) ( )= =x g u y h u, , , ,

as suggested in Figure 15.57. We assume the transformation is one-to-one on the interior of 
G. We call R the image of G under the transformation, and G the preimage of R. Any func-
tion ( )f x y,  defined on R can be thought of as a function υ υ( )( ) ( )f g u h u, ,   ,  defined on G 
as well. How is the integral of ( )f x y,  over R related to the integral of υ υ( )( ) ( )f g u h u, ,   ,  
over G?

To gain some insight into the question, we look again at the single variable case. To be 
consistent with how we are using them now, we interchange the variables x and u used in 
the substitution method for single integrals in Chapter 5, so the equation is

∫ ∫= ′f x dx f g u g u du( ) ( ( )) ( ) .
g a

g b

a

b

( )

( )
  x g u dx g u du( ), ( )= = ′

To propose an analogue for substitution in a double integral ( )∫∫ f x y dx dy, ,R  we need a 
derivative factor like g u( )′  as a multiplier that transforms the area element du υd  in the 
region G to its corresponding area element dx dy in the region R. We denote this factor 
by J. In continuing with our analogy, it is reasonable to assume that J is a function of 
both variables u and υ, just as g′ is a function of the single variable u. Moreover, J  
should register instantaneous change, so partial derivatives are going to be involved in its 
expression. Since four partial derivatives are associated with the transforming equations 

υ( )=x g u,  and υ( )=y h u, , it is also reasonable to assume that the factor υ( )J u,  we 
seek includes them all. These features are captured in the following definition, which is 
constructed from the partial derivatives and is named after the German mathematician 
Carl Jacobi.

HISTORICAL BIOGRAPHY

Carl Gustav Jacob Jacobi
(1804–1851)
www.bit.ly/2xZS8Wi
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The Jacobian can also be denoted by

υ
υ

( )
( )
( )

=
∂
∂

J u
x y
u

,
,
,

to help us remember how the determinant in Equation (1) is constructed from the partial 
derivatives of x and y. The array of partial derivatives in Equation (1) behaves just like the 
derivative ′g  in the single variable situation. The Jacobian measures how much the trans-
formation is expanding or contracting the area around the point υ( )u, . Effectively, the fac-
tor J  converts the area of the differential rectangle υdu d  in G to match its corresponding 
differential area dx dy in R. We note that, in general, the value of the scaling factor J  
depends on the point υ( )u,  in G; that is, the scaling changes as the point υ( )u,  varies 
through the region G. Our examples to follow will show how it scales the differential area 
υdu d  for specific transformations.
Now we can answer our original question concerning the relationship of the integral 

of ( )f x y,  over the region R to the integral of υ υ( )( ) ( )f g u h u, ,   ,  over G.

Differential Area Change Substituting 
υ υ= ( ) ( )=x g u y h u, , , 

dx dy
x y

u
du d

,

,

( )
( )υ

υ=
∂

∂

DEFINITION The Jacobian determinant or Jacobian of the coordinate trans-
formation υ υ( ) ( )= =x g u y h u, ,   ,  is

υ υ

υ
υ υ

( ) =

∂
∂

∂
∂

∂
∂

∂
∂

= ∂
∂
∂
∂
− ∂
∂
∂
∂

J u

x
u

x

y
u

y
x
u

y y
u

x, . (1)

THEOREM 3—Substitution for Double Integrals
Suppose that ( )f x y,  is continuous over the region R. Let G be the preimage of 
R under the transformation υ υ( ) ( )= =x g u y h u, ,   , , which is assumed to be 
one-to-one on the interior of G. If the functions g and h have continuous first par-
tial derivatives within the interior of G, then

 f x y dx dy f g u h u
x y
u

du d, , ,   ,
,
,

.
R G
∫∫ ∫∫ υ υ

υ
υ( )

( )
( )

( ) ( ) ( )=
∂
∂

 (2)

The derivation of Equation (2) is intricate and properly belongs to a course in advanced 
calculus, so we do not include it here. We now present examples illustrating the substitu-
tion method defined by the equation.

EXAMPLE 1  Find the Jacobian for the polar coordinate transformation x r cos ,θ=   
y r sin ,θ=  and use Equation (2) to write the Cartesian integral ( )∫∫ f x y dx dy,R  as a 
polar integral.

Solution Figure 15.58 shows how the equations θ θ= =x r y rcos ,   sin  transform the 
rectangle θ π≤ ≤ ≤ ≤G r: 0 1,  0 2, into the quarter of a circular disk R bounded by 
+ =x y 12 2  in the first quadrant of the xy-plane.
For polar coordinates, we have r and θ in place of u and υ. With θ=x r cos  and 

θ=y r sin , the Jacobian is

θ θ

θ

θ θ

θ θ
θ θ( ) ( )=

∂
∂

∂
∂

∂
∂

∂
∂

=
−

= + =J r

x
r

x

y
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r

r
r r,

cos sin

sin cos
cos sin .2 2

FIGURE 15.58 The equations 
θ θ= =x r y rcos ,   sin  transform G 

into R. The Jacobian factor r, calculated in 
Example 1, scales the differential rectangle 
θdr d  in G to match the differential area 

element dx dy in R.
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Since we assume ≥r 0 when integrating in polar coordinates, θ( ) = =J r r r,  so that 
Equation (2) gives

 f x y dx dy f r r r dr d, cos , sin .
R G
∫∫ ∫∫ θ θ θ( ) ( )=  (3)

This is the same formula we derived independently using a geometric argument for polar 
area in Section 15.4. 

Here is an example of a substitution in which the image of a rectangle under the coor-
dinate transformation is a trapezoid. Transformations like this one are called linear trans-
formations, and their Jacobians are constant throughout G.

EXAMPLE 2  Evaluate

∫∫
−( )

=

= + x y
dx dy

2
2x y

x y

2

2 1

0

4

by applying the transformation

 υ= − =u
x y y2

2
,

2
 (4)

and integrating over an appropriate region in the υu -plane.

Solution We sketch the region R of integration in the xy-plane and identify its boundaries 
(Figure 15.59).

FIGURE 15.59 The equations υ= +x u  and υ=y 2  transform G 
into R. Reversing the transformation by the equations ( )= −u x y2 2 
and υ = y 2 transforms R into G (Example 2).
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To apply Equation (2), we need to find the corresponding υu -region G and the Jacobian 
of the transformation. To find them, we first solve Equations (4) for x and y in terms of u 
and υ. From those equations it is easy to find algebraically that

 υ υ= + =x u y, 2 . (5)

We then find the boundaries of G by substituting these expressions into the equations for 
the boundaries of R (Figure 15.59)

xy-equations for  
the boundary of R

Corresponding uυ-equations  
for the boundary of G

Simplified  
uυ-equations

=x y 2 υ υ υ+ = =u 2 2 =u 0

( )= +x y 2 1 υ υ υ( )+ = + = +u 2 2 1 1 =u 1

=y 0 υ =2 0 υ = 0

=y 4 υ =2 4 υ = 2
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From Equations (5) the Jacobian of the transformation is

υ υ

υ

υ
υ

υ

υ
υ
υ

( )
( ) ( )

=

∂
∂

∂
∂

∂
∂

∂
∂

=

∂
∂

+ ∂
∂

+

∂
∂

∂
∂

= =J u

x
u

x

y
u

y
u

u u

u

,
(2 ) (2 )

1 1

0 2
2.

We now have everything we need to apply Equation (2):

x y
dx dy u J u du d

u du d u d d

2
2

,

( ) 2 2.

u

u

x y

x y

u

u

0

1

0

2

2

2 1

0

4

0

1

0

2
2

0

1

0

2

0

2

∫∫∫∫

∫∫ ∫ ∫

υ υ

υ υ υ

( )

( )

− =

= = 




 = =

υ

υ( )

=

=

=

=

=

= +

=

=

EXAMPLE 3  Evaluate

x y y x dy dx2 .
x

2

0

1

0

1

∫∫ ( )+ −
−

Solution We sketch the region R of integration in the xy-plane and identify its boundar-
ies (Figure 15.60). The integrand suggests the transformation = +u x y and υ = −y x2 . 
Routine algebra produces x and y as functions of u and υ:

 υ υ= − = +x u y u
3 3

, 2
3 3

. (6)

From Equations (6), we can find the boundaries of the υu -region G (Figure 15.60).

xy-equations for  
the boundary of R

Corresponding uυ-equations  
for the boundary of G

Simplified  
uυ-equations

+ =x y 1 υ υ( ) ( )− + + =u u
3 3

2
3 3

1 =u 1

=x 0 υ− =u
3 3

0 υ = u

=y 0 υ+ =u2
3 3

0 υ = − u2

The Jacobian of the transformation in Equations (6) is

υ υ

υ

( ) =

∂
∂

∂
∂

∂
∂

∂
∂

=
−

=J u

x
u

x

y
u

y
,

1
3

1
3

2
3

1
3

1
3

.

Applying Equation (2), we evaluate the integral:

x y y x dy dx u J u d du

u d du u du

u u u du u du u

2 ,

1
3

1
3

1
3

1
9

8 2
9

2
9

.

x

u

u

u

u

u

u

u

u

2
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1

0

1
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20

1

1 2 2

20

1
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20

1
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0

1
7 2 9 2

0

1

0

1

∫∫ ∫∫

∫∫ ∫

∫ ∫

υ υ υ

υ υ υ( )

( )

( )

( )+ − =

= = 





= + = = 

=

υ

υ

υ

υ

−

=−

=

=

=

− =−

=

In the next example we illustrate a nonlinear transformation of coordinates resulting 
from simplifying the form of the integrand. Like the polar coordinates’ transformation, 
nonlinear transformations can map a straight-line boundary of a region into a curved 

FIGURE 15.60 The equations  
υ( ) ( )= −x u 3 3  and 
υ( ) ( )= +y u2 3 3  transform G into R. 

Reversing the transformation by the  
equations = +u x y and υ = −y x2  
transforms R into G (Example 3).
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boundary (or vice versa with the inverse transformation). In general, nonlinear transforma-
tions are more complex to analyze than linear ones, and a complete treatment is left to a 
more advanced course.

EXAMPLE 4  Evaluate the integral

∫∫
y
x

e dx dy.xy

y

y

11

2

Solution The square root terms in the integrand suggest that we might simplify the inte-
gration by substituting =u xy and υ = y x . Squaring these equations gives =u xy2  
and υ = y x,2  which imply that υ =u y2 2 2 and υ =u x .2 2 2  So we obtain the transfor-
mation (in the same ordering of the variables as discussed before)

υ
υ= =x u y uand ,

with >u 0 and υ > 0. Let’s first see what happens to the integrand itself under this trans-
formation. The Jacobian of the transformation is not constant:

υ υ

υ

υ υ
υ υ

( ) =

∂
∂

∂
∂

∂
∂

∂
∂

=
−

=J u

x
u

x

y
u

y

u

u

u,
1

2 .2

If G is the region of integration in the υu -plane, then by Equation (2) the transformed 
double integral under the substitution is

∫∫ ∫∫ ∫∫ ∫∫υ υ υ υ
υ

υ υ( )= = =y
x

e dx dy e J u du d e u du d ue du d, 2 2 .xy

R

u

G

u

G

u

G

The transformed integrand function is easier to integrate than the original one, so we pro-
ceed to determine the limits of integration for the transformed integral.

The region of integration R of the original integral in the xy-plane is shown in Figure 
15.61. From the substitution equations =u xy and υ = y x , we see that the image of 
the left-hand boundary =xy 1 for R is the vertical line segment υ= ≥ ≥u 1,  2 1, in G 
(see Figure 15.62). Likewise, the right-hand boundary =y x of R maps to the horizontal 
line segment υ = ≤ ≤u1,  1 2, in G. Finally, the horizontal top boundary =y 2 of R 
maps to υ υ= ≤ ≤u 2,  1 2, in G. As we move counterclockwise around the boundary of 
the region R, we also move counterclockwise around the boundary of G, as shown in 
Figure 15.62. Knowing the region of integration G in the υu -plane, we can now write 
equivalent iterated integrals:

∫∫ ∫∫ υ=y
x

e dx dy ue d du  2 .xy

y

y
u

u

11

2

1

2

1

2
  Note the order of integration.

We now evaluate the transformed integral on the right-hand side:

ue d du ue du

e ue du

u e du

u e e

e e e e e

2 2

2 2

2 2

2 2

2 2 2 .

u
u

u
u

u u

u

u u

u

u

1

2

1

2

1

2

1

2

1

2

1

2

1

2

2

∫∫ ∫

∫

∫

υ υ

( )

( )

( )

( )

( )( )

= 







= −

= −

= − +







= − + = −

υ

υ

=

=

=

=

FIGURE 15.61 The region of integration 
R in Example 4.
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FIGURE 15.62 The boundaries of the 
region G correspond to those of region R 
in Figure 15.61. Notice that as we move 
counterclockwise around the region R, we 
move counterclockwise around the region 
G as well. The inverse transformation 
equations υ= =u xy y x,    produce 
the region G from the region R.
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Substitutions in Triple Integrals

The cylindrical and spherical coordinate substitutions in Section 15.7 are special cases of a 
substitution method that pictures changes of variables in triple integrals as transformations 
of solid regions. The method is like the method for double integrals given by Equation (2) 
except that now we work in three dimensions instead of two.

Suppose that a solid region G in υu w-space is transformed one-to-one into the solid 
region D in xyz-space by differentiable equations of the form

υ υ υ( ) ( ) ( )= = =x g u w y h u w z k u w, , , , , , , , ,

as suggested in Figure 15.63. Then any function ( )F x y z, ,    defined on D can be thought of 
as a function

υ υ υ υ( ) ( ) ( )( ) ( )=F g u w h u w k u w H u w, , ,   , , ,   , , , ,

defined on G. If g, h, and k have continuous first partial derivatives, then the integral of 
( )F x y z, ,  over D is related to the integral of υ( )H u w, ,  over G by the equation

 F x y z dx dy dz H u w J u w du d dw, , , , , , .
D G
∫∫∫ ∫∫∫ υ υ υ( ) ( ) ( )=  (7)

FIGURE 15.63 The equations υ υ( ) ( )= =x g u w y h u w, , ,   , , , and 
υ( )=z k u w, ,  allow us to change an integral over a region D in Cartesian 

xyz-space into an integral over a region G in Cartesian υu w-space using 
Equation (7).
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y = h(u, y, w)
z = k(u, y, w)

y

Cartesian uyw-space Cartesian xyz-space

The factor υ( )J u w, , , whose absolute value appears in this equation, is the Jacobian
determinant

υ

υ

υ

υ

υ
( )

( )
( )

=

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=
∂
∂

J u w

x
u

x x
w

y
u

y y
w

z
u

z z
w

x y z
u w

, ,
, ,
, ,

.

This determinant measures how much the volume near a point in G is being expanded 
or contracted by the transformation from υ( )u w, ,  to ( )x y z, ,  coordinates. As in the 
two-dimensional case, the derivation of the change-of-variable formula in Equation (7) 
is omitted.

For cylindrical coordinates, θr, , and z take the place of u, υ, and w. The transformation 
from Cartesian θr z-space to Cartesian xyz-space is given by the equations

θ θ= = =x r y r z zcos , sin ,

Determinants
2 2×  and 3 3×  determinants are  
evaluated as follows:

= −

=

− +

a b

c d
ad bc

a a a

b b b

c c c

a
b b

c c

a
b b

c c
a

b b

c c

1 2 3

1 2 3

1 2 3

1
2 3

2 3

2
1 3

1 3
3

1 2

1 2



956 Chapter 15 Multiple Integrals

(Figure 15.64). The Jacobian of the transformation is

J r z

x
r

x x
z

y
r

y y
z

z
r

z z
z

r

r r r r, ,

cos sin 0

sin cos 0

0 0 1

cos sin .2 2θ

θ

θ

θ

θ θ

θ θ θ θ( ) =

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

−

= + =

The corresponding version of Equation (7) is

F x y z dx dy dz H r z r dr d dz, , , , .
D G
∫∫∫ ∫∫∫ θ θ( ) ( )=

We can drop the absolute value signs because ≥r 0.
For spherical coordinates, ρ φ, , and θ take the place of u, υ, and w. The transformation 

from Cartesian ρφθ-space to Cartesian xyz-space is given by

ρ φ θ ρ φ θ ρ φ= = =x y zsin cos , sin sin , cos

(Figure 15.65). The Jacobian of the transformation (see Exercise 23) is

ρ φ θ

ρ φ θ

ρ φ θ

ρ φ θ

ρ φ( ) =

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=J

x x x

y y y

z z z

, , sin .2

The corresponding version of Equation (7) is

F x y z dx dy dz H d d d, , , , sin .
D G

2∫∫∫ ∫∫∫ ρ φ θ ρ φ ρ φ θ( ) ( )=

FIGURE 15.64 The equations 
θ θ= =x r y rcos ,   sin , and =z z 

transform the rectangular box G into a 
cylindrical wedge D.
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FIGURE 15.65 The equations ρ φ θ ρ φ θ= =x ysin cos ,   sin sin , and 
ρ φ=z cos  transform the rectangular box G into the spherical wedge D.

x
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Cartesian rfu-space

f

r Cartesian xyz-space

u
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Rectangular box with
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x = r sin f cos u
y = r sin f sin u
z = r cos f

z

f

u = constant

(x, y, z) D

f = constant

r = constant

r

We can drop the absolute value signs because φsin  is never negative for φ π≤ ≤0 . Note 
that this is the same result we obtained in Section 15.7.

Here is an example of another substitution. Although we could evaluate the integral in 
this example directly, we have chosen it to illustrate the substitution method in a simple 
(and fairly intuitive) setting.
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EXAMPLE 5 Evaluate

∫∫∫ ( )− +
( )

=

= + x y z dx dy dz
2

2 3x y

x y

2

2 1

0

4

0

3

by applying the transformation

 υ( )= − = =u x y y w z2 2, 2, 3 (8)

and integrating over an appropriate region in υu w-space.

Solution We sketch the solid region D of integration in xyz-space and identify its bound-
aries (Figure 15.66). In this case, the bounding surfaces are planes.

To apply Equation (7), we need to find the corresponding υu w-region G and the 
Jacobian of the transformation. To find them, we first solve Equations (8) for x, y, and z in 
terms of u, υ, and w. Routine algebra gives

 υ υ= + = =x u y z w, 2 , 3 . (9)

We then find the boundaries of G by substituting these expressions into the equations for 
the boundaries of D.

xyz-equations for  
the boundary of D

Corresponding u wυ -equations  
for the boundary of G

Simplified  
u wυ -equations

=x y 2 υ υ υ+ = =u 2 2 =u 0

( )= +x y 2 1 υ υ υ( )+ = + = +u 2 2 1 1 =u 1

=y 0 υ =2 0 υ = 0

=y 4 υ =2 4 υ = 2

=z 0 =w3 0 =w 0

=z 3 =w3 3 =w 1

The Jacobian of the transformation, again from Equations (9), is

υ

υ

υ

υ

( ) =

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

= =J u w

x
u

x x
w

y
u

y y
w

z
u

z z
w

, ,

1 1 0

0 2 0

0 0 3

6.

We now have everything we need to apply Equation (7):

x y z dx dy dz

u w J u w du d dw

u w du d dw u uw d dw

w d dw w dw w dw

w w

2
2 3

, ,

6 6
2

6 1
2

6
2

6 1 2

6 6 2 12.

x y

x y

u

u

2

2 1

0

4

0

3

0

1

0

2

0

1

0

1

0

2

0

1 2

0

1

0

2

0

1

0

2

0

1

0

2

0

1

0

1

2

0

1

∫∫∫

∫∫∫

∫∫∫ ∫∫
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FIGURE 15.66 The equations 
υ υ= + =x u y,   2 , and =z w3  

transform G into D. Reversing the 
transformation by the equations 

υ( )= − =u x y y2 2,   2, and  
=w z 3 transforms D into G (Example 5).
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Jacobians and Transformed Regions in the Plane

 1. a. Solve the system

υ= − = +u x y x y, 2

for x and y in terms of u and υ. Then find the value of the 
Jacobian υ( ) ( )∂ ∂x y u, , .

 b. Find the image under the transformation u x y,= −  
x y2υ = +  of the triangular region with vertices ( )0, 0 , 

( )1,1 , and ( )−1, 2  in the xy-plane. Sketch the transformed 
region in the υu -plane.

 2. a. Solve the system

υ= + = −u x y x y2 ,

for x and y in terms of u and υ. Then find the value of the 
Jacobian υ( ) ( )∂ ∂x y u, , .

 b. Find the image under the transformation u x y2 ,= +  
x yυ = −  of the triangular region in the xy-plane bounded 

by the lines = =y y x0,   , and + =x y2 2. Sketch the 
transformed region in the υu -plane.

 3. a. Solve the system

υ= + = +u x y x y3 2 , 4

for x and y in terms of u and υ. Then find the value of the 
Jacobian υ( ) ( )∂ ∂x y u, , .

 b. Find the image under the transformation u x y3 2 ,= +  
x y4υ = +  of the triangular region in the xy-plane bounded 

by the x-axis, the y-axis, and the line + =x y 1. Sketch the 
transformed region in the υu -plane.

 4. a. Solve the system

υ= − = − +u x y x y2 3 ,

for x and y in terms of u and υ. Then find the value of the 
Jacobian υ( ) ( )∂ ∂x y u, , .

 b. Find the image under the transformation u x y2 3 ,= −  
x yυ = − +  of the parallelogram R in the xy-plane with 

boundaries = − = =x x y x3,   0,   , and = +y x 1. Sketch 
the transformed region in the υu -plane.

Substitutions in Double Integrals

 5. Evaluate the integral

∫∫
−( )

=

= + x y
dx dy

2
2x y

x y

2

2 1

0

4

from Example 1 directly by integration with respect to x and y to 
confirm that its value is 2.

 6. Use the transformation in Exercise 1 to evaluate the integral

x xy y dx dy2
R

2 2∫∫ ( )− −

for the region R in the first quadrant bounded by the lines 
= − + = − + = −y x y x y x2 4,   2 7,   2, and = +y x 1.

 7. Use the transformation in Exercise 3 to evaluate the integral

x xy y dx dy3 14 8
R

2 2∫∫ ( )+ +

for the region R bounded by the lines y x3 2 1,( )= − +  
y x y x3 2 3,   1 4 ,( ) ( )= − + = −  and ( )= − +y x1 4 1.

 8. Use the transformation and parallelogram R in Exercise 4 to eval-
uate the integral

x y dx dy2 .
R
∫∫ ( )−

 9. Let R be the region in the first quadrant of the xy-plane bounded 
by the hyperbolas = =xy xy1,   9 and the lines = =y x y x,   4 . 
Use the transformation υ υ= =x u y u,    with >u 0 and υ > 0 
to rewrite

y
x

xy dx dy
R
∫∫ +








as an integral over an appropriate region G in the υu -plane. Then 
evaluate the υu -integral over G.

 10. a.  Find the Jacobian of the transformation υ= =x u y u,    and 
sketch the region υ≤ ≤ ≤ ≤G u u:1 2,  1 2, in the υu -plane.

 b. Then use Equation (2) to transform the integral

∫∫
y
x

dy dx
1

2

1

2

into an integral over G, and evaluate both integrals.

 11. Polar moment of inertia of an elliptical plate  A thin plate 
of constant density covers the region bounded by the ellipse 

+ = > >x a y b a b1,   0,   0,2 2 2 2  in the xy-plane. Find the 
first moment of the plate about the origin. (Hint: Use the transfor-
mation θ θ= =x ar y brcos ,   sin .)

 12. The area of an ellipse The area πab of the ellipse 
+ =x a y b 12 2 2 2  can be found by integrating the function 

( ) =f x y, 1 over the region bounded by the ellipse in the xy-plane. 
Evaluating the integral directly requires a trigonometric substitu-
tion. An easier way to evaluate the integral is to use the transforma-
tion υ= =x au y b,    and evaluate the transformed integral over 
the disk υ+ ≤G u: 12 2  in the υu -plane. Find the area this way.

 13. Use the transformation in Exercise 2 to evaluate the integral

x y e dx dy2 y x

y

y2 2

0

2 3

∫∫ ( )+ ( )−
−

by first writing it as an integral over a region G in the υu -plane.

 14. Use the transformation υ υ( )= + =x u y1 2 ,    to evaluate the 
integral

y x y e dx dy2 x y

y

y
3 2

2

4 2

0

2 2∫∫ ( )− ( )
( )

−
+

by first writing it as an integral over a region G in the υu -plane.

 15. Use the transformation x u y u,  υ υ= =  to evaluate the integral sum

∫∫ ∫∫( ) ( )+ + +x y dx dy x y dx dy.
y

y

y

y
2 2

11

2
2 2

4

4

2

4

 16. Use the transformation υ υ= − =x u y u,   22 2  to evaluate the 
integral

∫∫ +
−

x y dy dx.
x

2 2

0

2 1

0

1

(Hint: Show that the image of the triangular region G with verti-
ces ( )0, 0 , ( )1, 0 , ( )1,1  in the υu -plane is the region of integration 
R in the xy-plane defined by the limits of integration.)

EXERCISES 15.8 
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Substitutions in Triple Integrals

 17. Evaluate the integral in Example 5 by integrating with respect to 
x, y, and z.

 18. Volume of a solid ellipsoid Find the volume of the solid ellipsoid

+ + ≤x
a

y
b

z
c

1.
2

2

2

2

2

2

(Hint: Let υ= =x au y b,   , and =z cw. Then find the volume 
of an appropriate region in υu w-space.)

 19. Evaluate

xyz dx dy dz
D
∫∫∫

over the solid ellipsoid D,

+ + ≤x
a

y
b

z
c

1.
2

2

2

2

2

2

(Hint: Let υ= =x au y b,   , and =z cw. Then integrate over an 
appropriate region in υu w-space.)

 20. Let D be the solid region in xyz-space defined by the inequalities

≤ ≤ ≤ ≤ ≤ ≤x xy z1 2, 0 2, 0 1.

Evaluate

x y xyz dx dy dz3
D

2∫∫∫ ( )+

by applying the transformation

υ= = =u x xy w z, , 3

and integrating over an appropriate region G in υu w-space.

Theory and Examples

 21. Find the Jacobian υ( ) ( )∂ ∂x y u, ,  of the transformation

 a. υ υ= =x u y ucos , sin

 b. υ υ= =x u y usin , cos .

 22. Find the Jacobian υ( ) ( )∂ ∂x y z u w, , , ,  of the transformation

 a. υ υ= = =x u y u z wcos , sin ,

 b. υ ( )( )= − = − = −x u y z w2 1, 3 4, 1 2 4 .

 23. Evaluate the appropriate determinant to show that the Jacobian 
of the transformation from Cartesian ρφθ-space to Cartesian xyz-
space is ρ φsin .2

 24. Substitutions in single integrals How can substitutions in 
single definite integrals be viewed as transformations of regions? 
What is the Jacobian in such a case? Illustrate with an example.

 25. Centroid of a solid semi-ellipsoid Assuming the result that 
the centroid of a solid hemisphere lies on the axis of symmetry 
three-eighths of the way from the base toward the top, show, by 
transforming the appropriate integrals, that the center of mass of a 
solid semi-ellipsoid ( ) ( ) ( )+ + ≤ ≥x a y b z c z1,   0,2 2 2 2 2 2  
lies on the z-axis three-eighths of the way from the base toward 
the top. (You can do this without evaluating any of the integrals.)

 26. Cylindrical shells In Section 6.2, we learned how to find 
the volume of a solid of revolution using the shell method. 
Specifically, if the region between the curve =y f x( ) and the 
x-axis from a to b ( )< <a b0  is revolved about the y-axis, the 
volume of the resulting solid is π∫ x f x dx2 ( ) .a

b
 Prove that finding 

volumes by using triple integrals gives the same result. (Hint: Use 
cylindrical coordinates with the roles of y and z changed.)

 27. Inverse transform The equations υ υ( ) ( )= =x g u y h u, ,   ,  
in Figure 15.57 transform the region G in the υu -plane into 
the region R in the xy-plane. Since the substitution trans-
formation is one-to-one with continuous first partial deriva-
tives, it has an inverse transformation, and there are equations 

α υ β( ) ( )= =u x y x y, ,   ,  with continuous first partial deriva-
tives transforming R back into G. Moreover, the Jacobian determi-
nants of the transformations are related reciprocally by

υ
υ( )

( )
( )
( )

∂
∂

=
∂
∂








−x y
u

u
x y

,
,

,
,

.
1

 (10)

Equation (10) is proved in advanced calculus. Use it to find the 
area of the region R in the first quadrant of the xy-plane bounded 
by the lines = =y x y x2 ,  2 , and the curves = =xy xy2,  2 1 
for =u xy and υ = y x.

 28. (Continuation of Exercise 27.) For the region R described in 
Exercise 27, evaluate the integral y dA.R

2∫∫

 1. Define the double integral of a function of two variables over a 
bounded region in the coordinate plane.

 2. How are double integrals evaluated as iterated integrals? Does 
the order of integration matter? How are the limits of integration 
determined? Give examples.

 3. How are double integrals used to calculate areas and average  
values. Give examples.

 4. How can you change a double integral in rectangular coordi-
nates into a double integral in polar coordinates? Why might it be 
worthwhile to do so? Give an example.

 5. Define the triple integral of a function ( )f x y z, ,  over a bounded 
solid region in space.

 6. How are triple integrals in rectangular coordinates evaluated? 
How are the limits of integration determined? Give an example.

 7. How are double and triple integrals in rectangular coordinates 
used to calculate volumes, average values, masses, moments, and 
centers of mass? Give examples.

 8. How are triple integrals defined in cylindrical and spherical coor-
dinates? Why might one prefer working in one of these coordinate 
systems to working in rectangular coordinates?

 9. How are triple integrals in cylindrical and spherical coordinates 
evaluated? How are the limits of integration found? Give examples.

 10. How are substitutions in double integrals pictured as transforma-
tions of regions in the plane? Give a sample calculation.

 11. How are substitutions in triple integrals pictured as transforma-
tions of solid regions? Give a sample calculation.
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