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 b. Use Equation (2) and the result in part (a) to find the moment 
of inertia of the solid about the line = =x y b0,   2 .

 38. If = =a b 6 and =c 4, the moment of inertia of the solid 
wedge in Exercise 22 about the x-axis is I 208.x =  Find the 
moment of inertia of the wedge about the line = = −y z4,   4 3 
(the edge of the wedge’s narrow end).

Joint Probability Density Functions
For Exercises 39–42, verify that f  gives a joint probability density 
function. Then find the expected values µX and µY.

 39. ( ) =
+ ≤ ≤ ≤ ≤







f x y
x y x y

,
, if 0 1 and 0 1,

0, otherwise.

 40. ( ) =
≤ ≤ ≤ ≤







f x y
xy x y

,
4 , if 0 1 and 0 1,

0, otherwise.

 41. ( ) =
≤ ≤ ≤ ≤







f x y
x y x y

,
6 , if 0 1 and 0 1,

0, otherwise.

2

 42. 
( )

( ) =
+ ≤ ≤ ≤ ≤







f x y
x y x y

,  
, if 0 1 and 0 1,

0, otherwise.

3
2

2 2

 43. Suppose that f  is a uniform joint probability density function on 
≤ < ≤ <x y0 2,  0 3. What is the formula for f ? What is the 

probability that <X Y ?

 44. The following formula defines a joint probability density func-
tion. What is the value of C? What are the expected values µX 
and µY?

f x y
Cxy x y

,
, if 0 2 and 0 3,

0, otherwise.
( ) =

≤ ≤ ≤ ≤






15.7 Triple Integrals in Cylindrical and Spherical Coordinates

When a calculation in physics, engineering, or geometry involves a cylinder, cone, or 
sphere, we can often simplify our work by using cylindrical or spherical coordinates, which 
are introduced in this section. The procedure for transforming to these coordinates and 
evaluating the resulting triple integrals is similar to the transformation to polar coordinates 
in the plane discussed in Section 15.4.

Integration in Cylindrical Coordinates

We obtain cylindrical coordinates for space by combining polar coordinates in the xy-plane 
with the usual z-axis. This assigns to every point in space coordinate triples of the form 
r z, , ,θ( )  as shown in Figure 15.46. Here we require r 0≥ .

DEFINITION Cylindrical coordinates represent a point P in space by ordered 
triples r z, ,θ( ) in which

1. r and θ are polar coordinates for the vertical projection of P on the xy-plane, 
with r 0≥ , and

2. z is the rectangular vertical coordinate.

The values of x, y, r, and θ in rectangular and cylindrical coordinates are related by the 
usual equations.

Equations Relating Rectangular ( )x y z, ,  and Cylindrical ( )θr z, ,  Coordinates

x r y r z z

r x y y x

cos , sin , ,

, tan2 2 2

θ θ

θ

= = =

= + =

In cylindrical coordinates, the equation r a=  describes not just a circle in the xy-plane 
but an entire cylinder about the z-axis (Figure 15.47). The z-axis is given by r 0.=  The 
equation 0θ θ=  describes the half-plane that contains the z-axis and makes an angle 0θ  with 
the positive x-axis. And, just as in rectangular coordinates, the equation z z0=  describes 
a plane perpendicular to the z-axis.

FIGURE 15.46 The cylindrical coordi-
nates of a point in space are r, ,θ  and z.
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FIGURE 15.47 Constant-coordinate 
equations in cylindrical coordinates yield 
cylinders and planes.
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Cylindrical coordinates are good for describing cylinders whose axes run along the 
z-axis and planes that either contain the z-axis or lie perpendicular to the z-axis. Surfaces 
like these have equations of constant coordinate value:

r

z

4

3
2.

θ π
=

=

=

When computing triple integrals over a solid region D in cylindrical coordinates, we 
partition the region into n small cylindrical wedges, rather than into rectangular boxes. In 
the kth cylindrical wedge, r, ,θ  and z change by r , ,k kθ∆ ∆  and z ,k∆  and the largest of these 
numbers among all the cylindrical wedges is called the norm of the partition. We express 
the triple integral as a limit of Riemann sums using these wedges. The volume of such a 
cylindrical wedge Vk∆  is obtained by taking the area Ak∆  of its base in the r -planeθ  and 
multiplying by the height ∆z k (Figure 15.48).

For a point r z, ,k k kθ( ) in the center of the kth wedge, we calculated in polar coordi-
nates that A r r .k k k kθ∆ = ∆ ∆  So θ θ∆ = ∆ ∆ ∆ = ∆ ∆ ∆V z r r r z r k k k k k k k k k, and a 
Riemann sum for f  over D has the form

S f r z r z r, , .n
k

n

k k k k k k k
1
∑ θ θ( )= ∆ ∆ ∆
=

The triple integral of a function f  over D is obtained by taking a limit of such Riemann 
sums with partitions whose norms approach zero:

Cylinder, radius 4, axis the z-axis

Half-plane containing the z-axis

Plane perpendicular to the z-axis

S f dV f r dz dr dlim .
n

n

D D
∫∫∫ ∫∫∫ θ= =

→∞

Triple integrals in cylindrical coordinates are then evaluated as iterated integrals, as in the
following example. Although the definition of cylindrical coordinates makes sense without
any restrictions on θ, in most situations when integrating, we will need to restrict θ to an
interval of length 2π. So we impose the requirement that α θ β≤ ≤ , where
0 2 .β α π≤ − ≤

EXAMPLE 1  Find the limits of integration in cylindrical coordinates for integrating 
a function f r z, ,θ( ) over the solid region D bounded below by the plane z 0,=  laterally 
by the circular cylinder ( )+ − =x y 1 1,2 2  and above by the paraboloid = +z x y .2 2

Solution The base of D is also the region’s projection R on the xy-plane. The boundary 
of R is the circle ( )+ − =x y 1 1.2 2  Its polar coordinate equation is

θ

θ

( )+ − =

+ − + =

− =

=

x y

x y y

r r

r

1 1

2 1 1

2 sin 0

2 sin .

2 2

2 2

2

The region is sketched in Figure 15.49.
We find the limits of integration, starting with the z-limits. A line M through a typical 

point θ( )r,  in R parallel to the z-axis enters D at =z 0 and leaves at = + =z x y r .2 2 2

Next we find the r-limits of integration. A ray L through θ( )r,  from the origin enters R 
at =r 0 and leaves at θ=r 2 sin .

FIGURE 15.48 In cylindrical coordi-
nates the volume of the wedge is approxi-
mated by the product θ∆ = ∆ ∆ ∆V r z r  .
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Volume Differential in Cylindrical 
Coordinates

dV r dz dr dθ=

FIGURE 15.49 Finding the limits of 
integration for evaluating an integral in 
cylindrical coordinates (Example 1).
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Finally, we find the -limitsθ  of integration. As L sweeps across R, the angle θ it makes 
with the positive x-axis runs from θ = 0 to θ π= . The integral is

f r z dV f r z r dz dr d, , , , .
D

r

00

2 sin

0

2

∫∫∫ ∫∫∫θ θ θ( ) ( )=
θπ

 

Example 1 illustrates a good procedure for finding limits of integration in cylindrical 
coordinates. The procedure is summarized as follows.

How to Integrate in Cylindrical Coordinates

To evaluate

f r z dV, ,
D
∫∫∫ θ( )

over a solid region D in space in cylindrical coordinates, integrating first with respect to z, 
then with respect to r, and finally with respect to θ, take the following steps.

1. Sketch. Sketch the solid region D along with its projection R on the xy-plane. Label the 
surfaces and curves that bound D and R.

y

x
R

D

z = g1(r, u)

z = g2(r, u)

z

y

z = g1(r, u)

x R
(r, u)

z = g2(r, u)

D

z
M

2. Find the z-limits of integration. Draw a line M through a typical point θ( )r,  of R parallel 
to the z-axis. As z increases, M enters D at θ( )=z g r,1  and leaves at θ( )=z g r, .2  
These are the z-limits of integration.
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3. Find the r-limits of integration. Draw a ray L through θ( )r,  from the origin. The ray 
enters R at θ=r h ( )1  and leaves at θ=r h ( ).2  These are the r-limits of integration.

L

u = a u = b

r = h2(u)

y

z = g1(r, u)

z = g2(r, u)

x

r = h1(u)

D

z
M

(r, u)

u

a b

R

FIGURE 15.50 Example 2 shows how 
to find the centroid of this solid.

z

M4

L

x y

x2 + y2 = 4
r = 2

z = x2 + y2

  = r2

u

(r, u)

4. Find the θ limits-  of integration. As L sweeps across R, the angle θ it makes with the positive 
x-axis runs from θ α=  to θ β= . These are the θ-limits of integration. The integral is

f r z dV f r z r dz dr d, , , , .
D

z g r

z g r

r h

r h

,

,

( )

( )

1

2

1

2

∫∫∫ ∫∫∫θ θ θ( ) ( )=
θ

θ

θ

θ

θ α

θ β

( )

( )

=

=

=

=

=

=

EXAMPLE 2  Find the centroid δ( )= 1  of the solid enclosed by the cylinder 
+ =x y 4,2 2  bounded above by the paraboloid = +z x y ,2 2  and bounded below by 

the xy-plane.

Solution We sketch the solid, bounded above by the paraboloid =z r 2 and below by 
the plane =z 0 (Figure 15.50). Its base R is the disk ≤ ≤r0 2 in the xy-plane.

The solid’s centroid ( )x y z, ,  lies on its axis of symmetry, here the z-axis. This makes 
= =x y 0. To find z , we divide the first moment Mxy by the mass M.

To find the limits of integration for the mass and moment integrals, we continue with 
the four basic steps. We completed our initial sketch. The remaining steps give the limits of 
integration.

The z-limits. A line M through a typical point θ( )r,  in the base parallel to the z-axis 
enters the solid at =z 0 and leaves at =z r .2

The r-limits. A ray L through θ( )r,  from the origin enters R at =r 0 and leaves at 
=r 2.

The θ limits- . As L sweeps over the base like a clock hand, the angle θ it makes with 
the positive x-axis runs from θ = 0 to θ π= 2 . The value of Mxy is

M z r dz dr d z r dr d

r dr d r d d

2

2 12
16
3

32
3

.

xy

r

z

z r

r

r

00

2

0

2 2

00

2

0

2

5

0

2

0

2 6

0

2

0

2

0

2

2 2

∫∫∫ ∫∫

∫∫ ∫ ∫

θ θ

θ θ θ π

= = 




= = 




= =

π π

π π π

=

=

=

=

The value of M is

∫∫∫ ∫∫

∫∫ ∫ ∫

θ θ

θ θ θ π

= = 




= = 




= =

π π

π π π

=

=

=

=

M r dz dr d z r dr d

r dr d r d d
4

4 8 .

r

z

z r

r

r

00

2

0

2

00

2

0

2

3

0

2

0

2 4

0

2

0

2

0

2

2 2
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Therefore,

z
M

M
32

3
1

8
4
3

,xy π
π

= = =

and the centroid is ( )0, 0, 4 3 . Notice that the centroid lies on the z-axis, outside the solid. 
 

Spherical Coordinates and Integration

Spherical coordinates locate points in space with two angles and one distance, as shown in 
Figure 15.51. The first coordinate, 

 
ρ = OP , is the point’s distance from the origin and is 

never negative. The second coordinate, φ, is the angle 
 
OP  makes with the positive z-axis. 

It is required to lie in the interval 0, .π[ ]  The third coordinate is the angle θ as measured in 
cylindrical coordinates.

φ  is the Greek letter phi, pronounced 
“fee.”

FIGURE 15.51 The spherical coordi-
nates ρ φ, , and θ and their relation to x, y, 
z, and r.

y

z

0

r

x

x

y

P(r, f, u)

z = r cos f

f

u

r

DEFINITION Spherical coordinates represent a point P in space by ordered 
triples ρ φ θ( ), ,  in which

1. ρ is the distance from P to the origin ρ( )≥ 0 .

2. φ is the angle 
 
OP  makes with the positive z-axis φ π( )≤ ≤0 .

3. θ is the angle from cylindrical coordinates.

FIGURE 15.52 Constant-coordinate 
equations in spherical coordinates yield 
spheres, single cones, and half-planes.

r = a, 
f and u vary

u = u0, 
r and f vary

x

y

P(r, f0, u0)
f0

z

f = f0, 
r and u vary

u0

Equations Relating Spherical Coordinates to Cartesian  
and Cylindrical Coordinates

 

r x r

z y r

x y z r z

sin , cos sin cos ,

cos , sin sin sin ,

.2 2 2 2 2

ρ φ θ ρ φ θ

ρ φ θ ρ φ θ

ρ

= = =

= = =

= + + = +

 (1)

On maps of Earth, θ is related to the longitude of a point on the planet and φ to its 
latitude, while ρ is related to elevation above Earth’s surface.

The equation ρ = a describes the sphere of radius a centered at the origin 
(Figure 15.52). The equation φ φ= 0 describes a single cone whose vertex lies at the 
origin and whose axis lies along the z-axis. (We broaden our interpretation to include the 
xy-plane as the cone φ π= 2.) If φ0 is greater than π 2, the cone φ φ= 0 opens down-
ward. The equation θ θ= 0 describes the half-plane that contains the z-axis and makes an 
angle θ0 with the positive x-axis.

EXAMPLE 3  Find a spherical coordinate equation for the sphere 
( )+ + − =x y z 1 1.2 2 2

Solution We use Equations (1) to substitute for x, y, and z:

ρ φ θ ρ φ θ ρ φ

ρ φ θ θ ρ φ ρ φ

ρ φ φ ρ φ

ρ ρ φ

ρ φ

( )

( )

( )

( )+ + − =

+ + − =

+ + − + =

+ =

=

=

x y z 1 1

sin cos sin sin cos 1 1

sin cos sin cos 2 cos 1 1

sin cos 2 cos

2 cos

2 cos .

2 2 2

2 2 2 2 2 2 2

2 2 2 2 2 2

2 2 2

2


1


1

Eqs. (1)

Includes ρ = 0
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The angle φ  varies from 0 at the north pole of the sphere to π 2 at the south pole; the 
angle θ  does not appear in the expression for ρ, reflecting the symmetry about the z-axis 
(see Figure 15.53). 

EXAMPLE 4  Find a spherical coordinate equation for the cone = +z x y2 2 .

Solution 1 Use geometry. The cone is symmetric with respect to the z-axis and cuts the 
first quadrant of the yz-plane along the line =z y. The angle between the cone and the 
positive z-axis is therefore π 4 radians. The cone consists of the points whose spherical 
coordinates have φ equal to π 4, so its equation is φ π= 4. (See Figure 15.54.)

Solution 2 Use algebra. If we use Equations (1) to substitute for x, y, and z, we obtain 
the same result:

ρ φ ρ φ

ρ φ ρ φ

φ φ

φ π

= +

=

=

=

=

z x y

cos sin

cos sin

cos sin

4
.

2 2

2 2

Spherical coordinates are useful for describing spheres centered at the origin, half-
planes hinged along the z-axis, and cones whose vertices lie at the origin and whose axes 
lie along the z-axis. Surfaces like these have equations of constant coordinate value:

ρ

φ π

θ π

=

=

=

4

2
3

3
.

When computing triple integrals over a solid region D in spherical coordinates, we 
partition the region into n spherical wedges. The size of the kth spherical wedge, which 
contains a point ρ φ θ( ), , ,k k k  is given by the changes ρ φ∆ ∆,   ,k k  and θ∆ k  in ρ φ, , and θ. 
Such a spherical wedge has one edge a circular arc of length ρ φ∆ ,k k  another edge a circu-
lar arc of length ρ φ θ∆sin ,k k k  and thickness ρ∆ .k  The spherical wedge closely approxi-
mates a rectangular box of these dimensions when ρ φ∆ ∆,   ,k k  and θ∆ k  are all small 
(Figure 15.55). It can be shown that the volume of this spherical wedge ∆Vk is 

ρ φ ρ φ θ∆ = ∆ ∆ ∆V sink k k k k k
2  for ρ φ θ( ), , ,k k k  a point chosen inside the wedge.

The corresponding Riemann sum for a function ρ φ θ( )f , ,  is

∑ ρ φ θ ρ φ ρ φ θ( )= ∆ ∆ ∆
=

S f , , sin .n
k

n

k k k k k k k k
1

2

As the norm of a partition approaches zero, and the spherical wedges get smaller, the limit 
of the Riemann sums is the triple integral:

FIGURE 15.53 The sphere in 
Example 3.

y

x

z

2

1

r

f

x2 + y2 + (z − 1)2 = 1
r = 2 cos f

Volume Differential in Spherical 
Coordinates

dV d d dsin2ρ φ ρ φ θ=

Example 3

0, sin 0ρ φ≥ ≥

ρ ( )=Includes  0 the origin

0 φ π≤ ≤  

Sphere, radius 4, center at origin

Cone opening down from the origin, making an 
angle of π2 3 radians with the positive z-axis

Half-plane, hinged along the z-axis, making an 
angle of π 3 radians with the positive x-axis

S f dV f d d dlim , , , , sin .
n

n

D D

2∫∫∫ ∫∫∫ρ φ θ ρ φ θ ρ φ ρ φ θ( ) ( )= =
→∞

FIGURE 15.54 The cone in Example 4.
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FIGURE 15.55 In spherical coordinates 
we use the volume of a spherical wedge, 
which closely approximates that of a  
rectangular box.
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To evaluate integrals in spherical coordinates, we usually integrate first with respect 
to ρ. The procedure for finding the limits of integration is as follows. As with cylindrical 
coordinates, we restrict θ in the form α θ β≤ ≤  and β α π≤ − ≤0 2 .

How to Integrate in Spherical Coordinates

To evaluate

f dV, ,
D
∫∫∫ ρ φ θ( )

over a solid region D in space in spherical coordinates, integrating first with respect to ρ, 
then with respect to φ, and finally with respect to θ, take the following steps.

1. Sketch. Sketch the solid region D along with its projection R on the xy-plane. Label the 
surfaces that bound D.

x

yR

r = g1(f, u)

D

z

r = g2(f, u)

x

y

z

R

D

L

M

r = g2(f, u)

r = g1(f, u)

u = a
u = b

fmax

fmin
f

u

FIGURE 15.56 The ice cream cone in 
Example 5.

x y

z

R

L

M

D

u

f
Sphere r = 1

Cone f = p
3

2. Find the ρ limits-  of integration. Draw a ray M from the origin through D, making an 
angle φ with the positive z-axis. Also draw the projection of M on the xy-plane (call the 
projection L). The ray L makes an angle θ with the positive x-axis. As ρ increases, M 
enters D at ρ φ θ( )= g ,1  and leaves at ρ φ θ( )= g , .2  These are the ρ-limits of integra-
tion shown in the above figure.

3. Find the φ limits-  of integration. For any given θ, the angle φ that M makes with the 
positive z-axis runs from φ φ= min to φ φ= .max  The φ-limits of integration may 
depend on θ, but they are often constant.

4. Find the θ limits- of integration. The ray L sweeps over R as θ runs from α to β. These
are the θ-limits of integration. The integral is

f dV f d d d, , , , sin .
D

g

g
2

,

,

1

2

min

max

∫∫∫ ∫∫∫ρ φ θ ρ φ θ ρ φ ρ φ θ( ) ( )=
ρ φ θ

ρ φ θ

φ φ

φ φ

θ α

θ β

( )

( )

=

=

=

=

=

=

EXAMPLE 5 Find the volume of the “ice cream cone” D bounded above by the
sphere ρ = 1 and bounded below by the cone φ π= 3.

Solution The volume is V d d dsin ,D
2ρ φ ρ φ θ= ∫∫∫  the integral of ρ φ θ( ) =f , , 1 

over D.
To find the limits of integration for evaluating the integral, we begin by sketching D 

and its projection R on the xy-plane (Figure 15.56).
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The ρ limits-  of integration. We draw a ray M from the origin through D, making an angle φ 
with the positive z-axis. We also draw L, the projection of M on the xy-plane, along with the angle 
θ that L makes with the positive x-axis. Ray M enters D at ρ = 0 and leaves at ρ = 1.

The φ limits-  of integration. The cone φ π= 3 makes an angle of π 3 with the posi-
tive z-axis. For any given θ, the angle φ can run from φ = 0 to φ π= 3.

The θ limits-  of integration. The ray L sweeps over R as θ runs from 0 to π2 . The vol-
ume is

V d d d d d d

d d d d

d d

sin sin

3
  sin 1

3
sin

1
3

cos 1
6

1
3

1
6

(2 )
3

.

D

2 2

0

1

0

3

0

2

3

0

1

0

3

0

2

0

3

0

2

0

3

0

2

0

2

∫∫∫ ∫∫∫

∫∫ ∫∫

∫ ∫

ρ φ ρ φ θ ρ φ ρ φ θ

ρ φ φ θ φ φ θ

φ θ θ π π( )

= =

= 




=

= −





= − + = =

ππ

ρ

ρππ ππ

φ

φ ππ π

=

=

=

=

EXAMPLE 6  A solid of constant density δ = 1 occupies the solid region D in 
Example 5. Find the solid’s moment of inertia about the z-axis.

Solution In rectangular coordinates, the moment is

I x y dV .z

D

2 2∫∫∫ ( )= +

In spherical coordinates, x y sin cos sin sin sin .2 2 2 2 2 2ρ φ θ ρ φ θ ρ φ( ) ( )+ = + =  
Hence,

I d d d d d dsin sin sin .z

DD

2 2 2 4 3∫∫∫∫∫∫ ρ φ ρ φ ρ φ θ ρ φ ρ φ θ( )= =

For the region D in Example 5, this becomes

I d d d d d

d d d

d d

sin
5

sin

1
5

1 cos sin 1
5

cos
cos

3

1
5

1
2

1
24

1 1
3

1
5

5
24

1
24

(2 )
12

.

z
4 3

5

0

1
3

0

3

0

2

0

1

0

3

0

2

2

0

3

0

2 3

0

3

0

2

0

2

0

2

∫∫∫∫∫

∫∫ ∫

∫ ∫

ρ φ ρ φ θ ρ φ φ θ

φ φ φ θ φ φ θ

θ θ π π( )

( )

= = 




= − = − +





= − + + − = = =

ρ

ρππππ

ππ

φ

φ ππ

π π

=

=

=

=

Coordinate Conversion Formulas

C  
R

S  
R

S  
C

θ=x r cos ρ φ θ=x sin cos ρ φ=r sin

θ=y r sin ρ φ θ=y sin sin ρ φ=z cos

=z z ρ φ=z cos θ θ=

Corresponding formulas for dV in triple integrals:

dV dx dy dz

r dz dr d

d d dsin2

θ

ρ φ ρ φ θ

=

=

=
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In Exercises 1–12, sketch the region described by the following cylin-
drical coordinates in three-dimensional space.

 1. =r 2  2. θ π=
4

 3. = −z 1  4. =z r

 5. θ=r  6. θ=z r sin

 7. + =r z 42 2  8. θ π≤ ≤ ≤ ≤r1 2, 0
3

 9. ≤ ≤ −r z r9 2

 10. θ≤ ≤ ≤ ≤r z0 2 sin , 1 3

 11. θ θ π≤ ≤ ≤ ≤ ≤ ≤r z0 4 cos , 0
2

, 0 5

 12. π θ π θ≤ ≤ − ≤ ≤ ≤ ≤r z r0 3,
2 2

, 0 cos

In Exercises 13–22, sketch the region described by the following 
spherical coordinates in three-dimensional space.

 13. ρ = 3  14. φ π=
6

 15. θ π= 2
3

 16. ρ φ= csc

 17. ρ φ =cos 4

 18. ρ φ φ π≤ ≤ ≤ ≤1 2 sec , 0
4

 19. ρ φ≤ ≤0 3 csc

 20. ρ π φ π θ π≤ ≤ ≤ ≤ ≤ ≤0 1,
2

, 0

 21. 0 cos sin 2, 0 sin sin 3,ρ θ φ ρ θ φ≤ ≤ ≤ ≤  
0 cos 4ρ φ≤ ≤

 22. 4 sec 5, 0
2

φ ρ φ π≤ ≤ ≤ ≤

Evaluating Integrals in Cylindrical Coordinates
Evaluate the cylindrical coordinate integrals in Exercises 23–28.

 23. ∫∫∫ θ
π −

r dz dr d
r

r2

0

1

0

2 2

 24. ∫∫∫ θ
π −

r dz dr d
r

r

3

18

0

3

0

2

2

2

 25. ∫∫∫ θ
θ ππ +

r dz dr d
r

0

3 24

0

2

0

2 2

 26. ∫∫∫ θ
θ ππ

− −

−
z r dz dr d

r

r

4

3 4

00 2

2

 27. ∫∫∫ θ
π −

r dz dr d3
r

r1 2

0

1

0

2 2

 28. ∫∫∫ θ θ( )+
π

−
r z r dz dr dsin2 2 2

1 2

1 2

0

1

0

2

Changing the Order of Integration in Cylindrical Coordinates
The integrals we have seen so far suggest that there are preferred 
orders of integration for cylindrical coordinates, but other orders usu-
ally work well and are occasionally easier to evaluate. Evaluate the 
integrals in Exercises 29–32.

 29. ∫∫∫ θ
π

r dr dz d
z

3

0

3

0

3

0

2
 30. ∫∫∫ θ

θπ +

−
r dr d dz4

0

1 cos

0

2

1

1

 31. ∫∫∫ θ θ( )+
π

r z r d dr dzcos
z

2 2 2

0

2

00

1

 32. ∫∫∫ θ θ( )+
π

−

−
r r d dz drsin 1

r

r

0

2

2

4

0

2 2

 33. Let D be the solid region bounded below by the plane =z 0, 
above by the sphere + + =x y z 4,2 2 2  and on the sides by the 
cylinder + =x y 1.2 2  Set up the triple integrals in cylindrical 
coordinates that give the volume of D using the following orders 
of integration.

 a. θdz dr d  b. θdr dz d c. θd dz dr

 34. Let D be the solid region bounded below by the cone 
= +z x y2 2  and above by the paraboloid = − −z x y2 .2 2  

Set up the triple integrals in cylindrical coordinates that give the 
volume of D using the following orders of integration.

 a. θdz dr d  b. θdr dz d c. θd dz dr

Finding Iterated Integrals in Cylindrical Coordinates

 35. Give the limits of integration for evaluating the integral

f r z r dz dr d, ,
D
∫∫∫ θ θ( )

as an iterated integral over the solid region D that is bounded 
below by the plane =z 0, on the side by the cylinder θ=r cos , 
and on top by the paraboloid =z r3 .2

 36. Convert the integral

∫∫∫ ( )+
−

−
x y dz dx dy

xy
2 2

00

1

1

1 2

to an equivalent integral in cylindrical coordinates and evaluate 
the result.

In Exercises 37–42, set up the iterated integral for evaluating 
θ θ( )∫∫∫ f r z r dz dr d, ,D over the given solid region D.

 37. D is the right circular cylinder whose base is the circle θ=r 2 sin  
in the xy-plane and whose top lies in the plane = −z y4 .

EXERCISES 15.7 

In the next section we offer a more general procedure for determining dV in cylindri-
cal and spherical coordinates. The results, of course, will be the same.

z

y

x r = 2 sin u

z = 4 − y
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 38. D is the right circular cylinder whose base is the circle θ=r 3 cos  
and whose top lies in the plane = −z x5 .

 42. D is the right prism whose base is the triangle in the xy-plane 
bounded by the y-axis and the lines =y x  and =y 1 and whose 
top lies in the plane = −z x2 .

x

r = 3 cos u

y

z = 5 − x

z

 39. D is the solid right cylinder whose base is the region in the  
xy-plane that lies inside the cardioid θ= +r 1 cos  and outside 
the circle =r 1 and whose top lies in the plane =z 4.

 40. D is the solid right cylinder whose base is the region between the 
circles θ=r cos  and θ=r 2 cos  and whose top lies in the plane 
= −z y3 .

 41. D is the right prism whose base is the triangle in the xy-plane 
bounded by the x-axis and the lines =y x  and =x 1 and whose 
top lies in the plane = −z y2 .

z

y

x

4

r = 1 + cos u

r = 1

y

z

x

2

1
y = x

z = 2 − y

z

y

x

r = 2 cos u

r = cos u

z = 3 − y

y

z

x

2

1

y = x

z = 2 − x

Evaluating Integrals in Spherical Coordinates
Evaluate the spherical coordinate integrals in Exercises 43–48.

 43. d d dsin2

0

2 sin

00 ∫∫∫ ρ φ ρ φ θ
φππ

 44. d d dcos sin2

0

2

0

4

0

2

∫∫∫ ρ φ ρ φ ρ φ θ( )
ππ

45. d d dsin2

0

1 cos 2

00

2

∫∫∫ ρ φ ρ φ θ
φππ ( )−

 46. d d d5 sin3 3

0

1

00

3 2

∫∫∫ ρ φ ρ φ θ
ππ

 47. d d d3 sin2

sec

2

0

3

0

2

∫∫∫ ρ φ ρ φ θ
φ

ππ

48. d d dcos sin2

0

sec

0

4

0

2

∫∫∫ ρ φ ρ φ ρ φ θ( )
φππ

Changing the Order of Integration in Spherical Coordinates
The previous integrals suggest there are preferred orders of integra-
tion for spherical coordinates, but other orders give the same value 
and are occasionally easier to evaluate. Evaluate the integrals in 
Exercises 49–52.

 49. d d dsin 23

4

20

0

2

∫∫∫ ρ φ φ θ ρ
π

π

π−

 50. d d dsin2

0

2

csc

2 csc

6

3

∫∫∫ ρ φ θ ρ φ
π

φ

φ

π

π

51. d d d12 sin 3

0

4

00

1

∫∫∫ ρ φ φ θ ρ
ππ

 52. d d d5 sin4 3

csc

2

2

2

6

2

∫∫∫ ρ φ ρ θ φ
φπ

π

π

π

−

 53. Let D be the region in Exercise 33. Set up the triple integrals in 
spherical coordinates that give the volume of D using the follow-
ing orders of integration.

 a. d d dρ φ θ

 b. d d dφ ρ θ
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 54. Let D be the solid region bounded below by the cone 
= +z x y2 2  and above by the plane =z 1. Set up the triple 

integrals in spherical coordinates that give the volume of D using 
the following orders of integration.

 a. d d dρ φ θ b. d d dφ ρ θ

Finding Iterated Integrals in Spherical Coordinates
In Exercises 55–60, (a) find the spherical coordinate limits for the 
integral that calculates the volume of the given solid and then (b) eval-
uate the integral.

 55. The solid between the sphere ρ φ= cos  and the hemisphere 
ρ = ≥z2,   0

yx

r = 1
r = 1 + cos f

z

yx 2 2

2 r = 2r = cos f

z

Finding Triple Integrals

 61. Set up triple integrals for the volume of the sphere ρ = 2 in  
(a) spherical, (b) cylindrical, and (c) rectangular coordinates.

 62. Let D be the solid region in the first octant that is bounded below 
by the cone φ π= 4 and above by the sphere ρ = 3. Express 
the volume of D as an iterated triple integral in (a) cylindrical and 
(b) spherical coordinates. Then (c) find the volume.

 63. Let D be the smaller cap cut from a solid ball of radius 2 units by 
a plane 1 unit from the center of the sphere. Express the volume of 
D as an iterated triple integral in (a) spherical, (b) cylindrical, and 
(c) rectangular coordinates. Then (d) find the volume by evaluat-
ing one of the three triple integrals.

 64. Let D be the solid hemisphere + + ≤ ≥x y z z1,   02 2 2  . If the 
density is δ( ) =x y z, , 1, express the moment of intertia I z as an 
iterated integral in (a) cylindrical and (b) spherical coordinates. 
Then (c) find I .z

Volumes
Find the volumes of the solids in Exercises 65–70.

 65.  66. 
z

yx

z = 4 − 4 (x2 + y2)

z = (x2 + y2)2 −1

z

yx 1

–1

1

z = 1 − r

z = −"1 − r2

–1

yx

f = p
3

r = 2

z

 56. The solid bounded below by the hemisphere ρ = ≥z1,   0, and 
above by the surface ρ φ= +1 cos

 57. The solid enclosed by the surface ρ φ= −1 cos

 58. The upper portion cut from the solid in Exercise 57 by the xy-plane

 59. The solid bounded below by the sphere ρ φ= 2 cos  and above by 
the cone = +z x y2 2

yx

r = 2 cos f

z = "x2 + y2z

 60. The solid bounded below by the xy-plane, on the sides by the 
sphere ρ = 2, and above by the cone φ π= 3

 71. Ball and cones  Find the volume of the portion of the ball 
ρ ≤ a that lies between the cones φ π= 3 and φ π= 2 3.

 72. Ball and half-planes  Find the volume of the region cut from 
the ball ρ ≤ a by the half-planes θ = 0 and θ π= 6 in the first 
octant.

r = cos u

z = 3"1 − x2 − y2

yx

zz

y
x

z = "1 − x2 − y2

r = sin u

 69.  70. 

z

yx

z = "x2 + y2

r = −3 cos u

 67.  68. 
z

y

x

r = 3 cos u

z = −y
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 73. Ball and plane Find the volume of the smaller region cut from 
the ball ρ ≤ 2 by the plane =z 1.

 74. Cone and planes Find the volume of the solid enclosed by the 
cone = +z x y2 2  between the planes =z 1 and =z 2.

 75. Cylinder and paraboloid Find the volume of the solid region 
bounded below by the plane =z 0, laterally by the cylinder 
+ =x y 1,2 2  and above by the paraboloid = +z x y .2 2

 76. Cylinder and paraboloids Find the volume of the solid 
region bounded below by the paraboloid = +z x y ,2 2  later-
ally by the cylinder + =x y 1,2 2  and above by the paraboloid 
= + +z x y 1.2 2

 77. Cylinder and cones Find the volume of the solid cut from 
the thick-walled cylinder ≤ + ≤x y1 22 2  by the cones 
= ± +z x y .2 2

 78. Sphere and cylinder Find the volume of the solid region that 
lies inside the sphere + + =x y z 22 2 2  and outside the cylin-
der + =x y 1.2 2

 79. Cylinder and planes Find the volume of the solid region 
enclosed by the cylinder + =x y 42 2  and the planes =z 0 and 
+ =y z 4.

 80. Cylinder and planes Find the volume of the solid region 
enclosed by the cylinder + =x y 42 2  and the planes =z 0 and 
+ + =x y z 4.

 81. Region trapped by paraboloids Find the volume of the solid 
region bounded above by the paraboloid = − −z x y5 2 2 and 
below by the paraboloid = +z x y4 4 .2 2

 82. Paraboloid and cylinder Find the volume of the solid region 
bounded above by the paraboloid = − −z x y9 ,2 2  bounded 
below by the xy-plane, and lying outside the cylinder + =x y 1.2 2

 83. Cylinder and sphere Find the volume of the region cut from the 
solid cylinder + ≤x y 12 2  by the sphere + + =x y z 4.2 2 2

 84. Sphere and paraboloid Find the volume of the solid region 
bounded above by the sphere + + =x y z 22 2 2  and below by 
the paraboloid = +z x y .2 2

Average Values

 85. Find the average value of the function θ( ) =f r z r, ,  over the 
solid region bounded by the cylinder =r 1 between the planes 
= −z 1 and =z 1.

 86. Find the average value of the function θ( ) =f r z r, ,  over the 
solid ball bounded by the sphere + =r z 1.2 2  (This is the sphere 
+ + =x y z 1.2 2 2 )

 87. Find the average value of the function ρ φ θ ρ( ) =f , ,  over the 
solid ball ρ ≤ 1.

 88. Find the average value of the function ρ φ θ ρ φ( ) =f , , cos  over 
the upper half of the solid ball ρ φ π≤ ≤ ≤1,  0 2.

Masses, Moments, and Centroids

 89. Center of mass A solid of constant density is bounded below 
by the plane =z 0, above by the cone = ≥z r r,   0, and on the 
sides by the cylinder =r 1. Find the center of mass.

 90. Centroid Find the centroid of the solid region in the first octant 
that is bounded above by the cone = +z x y ,2 2  below by the 
plane =z 0, and on the sides by the cylinder + =x y 42 2  and 
the planes =x 0 and =y 0.

 91. Centroid Find the centroid of the solid in Exercise 60.

 92. Centroid Find the centroid of the solid bounded above by the 
sphere ρ = a and below by the cone φ π= 4.

 93. Centroid Find the centroid of the solid region that is bounded 
above by the surface =z r , on the sides by the cylinder =r 4, 
and below by the xy-plane.

 94. Centroid Find the centroid of the region cut from the solid 
ball + ≤r z 12 2  by the half-planes θ π= − ≥r3,   0, and 
θ π= ≥r3,   0.

 95. Moment of inertia of solid cone Find the moment of inertia 
of a solid right circular cone of base radius 1 and height 1 about 
an axis through the vertex parallel to the base if the density is 
δ = 1.

 96. Moment of inertia of ball Find the moment of inertia of a ball 
of radius a about a diameter if the density is δ = 1.

 97. Moment of inertia of solid cone Find the moment of inertia of 
a solid right circular cone of base radius a and height h about its 
axis if the density is δ = 1. (Hint: Place the cone with its vertex 
at the origin and its axis along the z-axis.)

 98. Variable density A solid is bounded on the top by the parabo-
loid =z r ,2  on the bottom by the plane =z 0, and on the sides 
by the cylinder =r 1. Find the center of mass and the moment 
of inertia about the z-axis if the density is

 a. δ θ( ) =r z z, ,

 b. δ θ( ) =r z r, , .

 99. Variable density A solid is bounded below by the cone 
= +z x y2 2  and above by the plane =z 1. Find the center 

of mass and the moment of inertia about the z-axis if the den-
sity is

 a. δ θ( ) =r z z, ,

 b. δ θ( ) =r z z, , .2

 100. Variable density A solid ball is bounded by the sphere ρ = a. 
Find the moment of inertia about the z-axis if the density is

 a. δ ρ φ θ ρ( ) =, , 2

 b. δ ρ φ θ ρ φ( ) = =r, , sin .

 101. Centroid of solid semi-ellipsoid Show that the centroid of 
the solid semi-ellipsoid of revolution ( ) ( )+ ≤r a z h 1,2 2 2 2  
≥z 0, lies on the z-axis three-eighths of the way from the base 

to the top. The special case =h a gives a solid hemisphere. Thus, 
the centroid of a solid hemisphere lies on the axis of symmetry 
three-eighths of the way from the base to the top.

 102. Centroid of solid cone Show that the centroid of a solid right 
circular cone is one-fourth of the way from the base to the vertex. 
(In general, the centroid of a solid cone or pyramid is one-fourth 
of the way from the centroid of the base to the vertex.)

 103. Density of center of a planet A planet is in the shape of a 
sphere of radius R and total mass M with spherically symmetric 
density distribution that increases linearly as one approaches its 
center. What is the density at the center of this planet if the den-
sity at its edge (surface) is taken to be zero?

 104. Mass of planet’s atmosphere A spherical planet of radius R 
has an atmosphere whose density is µ µ= −e ,ch

0  where h is the 
altitude above the surface of the planet, µ0 is the density at sea 
level, and c is a positive constant. Find the mass of the planet’s 
atmosphere.
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FIGURE 15.57 The equations 
υ( )=x g u,  and υ( )=y h u,  allow us to 

change an integral over a region R in the 
xy-plane into an integral over a region G in 
the υu -plane.

y

u
0

0

y

x

G

R

(u, y)

(x, y)

Cartesian uy-plane

x = g(u, y)
y = h(u, y)

Cartesian xy-plane

Theory and Examples

 105. Vertical planes in cylindrical coordinates 

 a. Show that planes perpendicular to the x-axis have equations 
of the form θ=r a sec  in cylindrical coordinates.

 b. Show that planes perpendicular to the y-axis have equations 
of the form θ=r b csc .

 106. (Continuation of Exercise 105.) Find an equation of the form 
θ=r f ( ) in cylindrical coordinates for the plane ax by c,+ =  

c 0.≠

 107. Symmetry What symmetry will you find in a surface that has 
an equation of the form =r f z( ) in cylindrical coordinates? 
Give reasons for your answer.

 108. Symmetry What symmetry will you find in a surface that has 
an equation of the form ρ φ= f ( ) in spherical coordinates? Give 
reasons for your answer.

15.8 Substitutions in Multiple Integrals

This section introduces the ideas involved in coordinate transformations to evaluate 
multiple integrals by substitution. The method replaces complicated integrals by ones 
that are easier to evaluate. Substitutions accomplish this by simplifying the integrand, 
the limits of integration, or both. A thorough discussion of multivariable transforma-
tions and substitutions is best left to a more advanced course, but our introduction here 
shows how the substitutions just studied reflect the general idea derived for single 
integral calculus.

Substitutions in Double Integrals

The polar coordinate substitution of Section 15.4 is a special case of a more general substi-
tution method for double integrals, a method that pictures changes in variables as transfor-
mations of regions.

Suppose that a region G in the υu -plane is transformed into the region R in the  
xy-plane by equations of the form

υ υ( ) ( )= =x g u y h u, , , ,

as suggested in Figure 15.57. We assume the transformation is one-to-one on the interior of 
G. We call R the image of G under the transformation, and G the preimage of R. Any func-
tion ( )f x y,  defined on R can be thought of as a function υ υ( )( ) ( )f g u h u, ,   ,  defined on G 
as well. How is the integral of ( )f x y,  over R related to the integral of υ υ( )( ) ( )f g u h u, ,   ,  
over G?

To gain some insight into the question, we look again at the single variable case. To be 
consistent with how we are using them now, we interchange the variables x and u used in 
the substitution method for single integrals in Chapter 5, so the equation is

∫ ∫= ′f x dx f g u g u du( ) ( ( )) ( ) .
g a

g b

a

b

( )

( )
  x g u dx g u du( ), ( )= = ′

To propose an analogue for substitution in a double integral ( )∫∫ f x y dx dy, ,R  we need a 
derivative factor like g u( )′  as a multiplier that transforms the area element du υd  in the 
region G to its corresponding area element dx dy in the region R. We denote this factor 
by J. In continuing with our analogy, it is reasonable to assume that J is a function of 
both variables u and υ, just as g′ is a function of the single variable u. Moreover, J  
should register instantaneous change, so partial derivatives are going to be involved in its 
expression. Since four partial derivatives are associated with the transforming equations 

υ( )=x g u,  and υ( )=y h u, , it is also reasonable to assume that the factor υ( )J u,  we 
seek includes them all. These features are captured in the following definition, which is 
constructed from the partial derivatives and is named after the German mathematician 
Carl Jacobi.
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