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COMPUTER EXPLORATIONS
In Exercises 49–52, use a CAS to change the Cartesian integrals into 
an equivalent polar integral and evaluate the polar integral. Perform 
the following steps in each exercise.

 a. Plot the Cartesian region of integration in the xy-plane.

 b. Change each boundary curve of the Cartesian region in 
part (a) to its polar representation by solving its Cartesian 
equation for r and θ.

 c. Using the results in part (b), plot the polar region of integra-
tion in the θr -plane.

 d. Change the integrand from Cartesian to polar coordinates. 
Determine the limits of integration from your plot in part (c) 
and evaluate the polar integral using the CAS integration 
utility.
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15.5 Triple Integrals in Rectangular Coordinates

Just as double integrals allow us to deal with more general situations than could be handled 
by single integrals, triple integrals enable us to solve still more general problems. We use 
triple integrals to calculate the volumes of three-dimensional shapes and the average value 
of a function over a three-dimensional region. Triple integrals also arise in the study of 
vector fields and fluid flow in three dimensions, as we will see in Chapter 16.

Triple Integrals

If ( )F x y z,  ,   is a function defined on a closed bounded solid region D in space, such as the 
region occupied by a solid ball or a lump of clay, then the integral of F  over D may be 
defined in the following way. We partition a rectangular boxlike region containing D into 
rectangular cells by planes parallel to the coordinate axes (Figure 15.30). We number the 
cells that lie completely inside D from 1 to n in some order, the kth cell having dimensions 
∆x k by ∆yk  by ∆z k and volume ∆ = ∆ ∆ ∆V x y z .k k k k  We choose a point ( )x y z,  , k k k  in 
each cell and form the sum

 ∑ ( )= ∆
=

S F x y z V,  ,  .n
k

n

k k k k
1

 (1)

We are interested in what happens as D is partitioned by smaller and smaller cells, so 
that ∆ ∆ ∆x y z,  ,  ,k k k  and the norm of the partition P , the largest value among 
∆ ∆ ∆x y z,  ,  ,k k k  all approach zero. When a single limiting value is attained, no matter how 
the partitions and points ( )x y z,  , k k k  are chosen, we say that F  is integrable over D. As 
before, it can be shown that when F  is continuous and the bounding surface of D is formed 
from finitely many smooth surfaces joined together along finitely many smooth curves, 
then F  is integrable. In this case, as P 0→  and the number of cells n goes to ∞, the 
sums Sn approach a limit. We call this limit the triple integral of F over D and write

S F x y z dV S F x y z dx dy dzlim , , or lim , , .
n
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D
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The regions D over which continuous functions are integrable are those having “reason-
ably smooth” boundaries.

Volume of a Solid Region in Space

If F  is the constant function whose value is 1, then the sums in Equation (1) reduce to
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FIGURE 15.30 Partitioning a solid 
with rectangular cells of volume ∆V .k
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DEFINITION The volume of a closed and bounded solid region D in space is

V dV.
D

∫∫∫=
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z = f2(x, y)

z = f1(x, y)

As ∆ ∆x y,  ,k k  and ∆z k approach zero, the cells ∆Vk  become smaller and more numerous 
and fill up more and more of D. We therefore define the volume of D to be the triple 
integral

V dVlim .
n

k

n

k

D1
∑ ∫∫∫∆ =

→∞ =

This definition is in agreement with our previous definitions of volume, although we omit 
the verification of this fact. As we will see in a moment, this integral enables us to calculate 
the volumes of solids enclosed by curved surfaces. These are more general solids than the 
ones encountered before (Chapter 6 and Section 15.2).

Iterated Integrals

We evaluate a triple integral by applying a three-dimensional version of Fubini’s Theorem 
(Section 15.2) to evaluate it by three repeated single integrations. As with double 
integrals, there is a geometric procedure for finding the limits of integration for these iter-
ated integrals.

To evaluate

F x y z dV, ,
D

∫∫∫ ( )

over a solid region D, integrate first with respect to z, then with respect to y, and finally 
with respect to x. (You might choose a different order of integration, but the procedure is 
similar, as we illustrate in Example 2.)

1. Sketch. Sketch the solid region D along with its “shadow” R (vertical projection) in the 
xy-plane. Label the upper and lower bounding surfaces of D and the upper and lower 
bounding curves of R.
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3. Find the y-limits of integration. Draw a line L through ( )x y,  parallel to the y-axis. As y 
increases, L enters R at =y g x( )1  and leaves at =y g x( ).2  These are the y-limits of 
integration.
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4. Find the x-limits of integration. Choose x-limits that include all lines through R parallel 
to the y-axis ( =x a and =x b in the preceding figure). These are the x-limits of inte-
gration. The integral is
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Follow similar procedures if you change the order of integration. The “shadow” of the 
solid region D lies in the plane of the last two variables with respect to which the iterated 
integration takes place. The limits of an iterated triple integral satisfy these properties:

• The limits of the outside integral are constants (they do not depend on any of the three 
variables of integration),

• the limits of the middle integral are functions that may depend on the variable of the 
outside integral, and

• the limits of the inside integral are functions that may depend on two variables: the 
middle integration variable and the outside integration variable.

2. Find the z-limits of integration. Draw a line M passing through a typical point ( )x y,  in 
R parallel to the z-axis. As z increases, M enters D at ( )=z f x y,1  and leaves at 

( )=z f x y, .2  These are the z-limits of integration.
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FIGURE 15.31 Finding the limits of integration for evaluating  
the triple integral of a function defined over the portion of the 
sphere of radius 5 that lies above the plane =z 3 (Example 1).
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The preceding procedure applies whenever a solid region D is bounded above and 
below by a surface, and when the “shadow” region R is bounded by a lower and upper 
curve. It does not apply to regions with more complicated shapes (such as regions contain-
ing holes); although, sometimes such regions can be subdivided into simpler regions for 
which the procedure does apply.

We illustrate this method of finding the limits of integration in our first example.

EXAMPLE 1  Let S be the sphere of radius 5 centered at the origin, and let D be the 
solid region under the sphere that lies above the plane =z 3. Set up the limits of integra-
tion for evaluating the triple integral of a function ( )F x y z,  ,   over the region D.

Solution The solid region under the sphere that lies above the plane =z 3 is enclosed 
by the surfaces + + =x y z 252 2 2  and =z 3.

To find the limits of integration, we first sketch the solid region, as shown in Figure 15.31. 
The “shadow region” R in the xy-plane is a circle of some radius centered at the origin. By con-
sidering a side view of the region D, we can determine that the radius of this circle is 4; see 
Figure 15.32a.

If we fix a point ( )x y,  in R and draw a vertical line M above ( )x y, , then we see that 
this line enters the region D at the height =z 3 and leaves the region at the height 
= − −z x y25 ;2 2 see Figure 15.31. This gives us the z-limits of integration.

To find the y-limits of integration, we consider a line L that lies in the region R, 
passes through the point ( )x y, , and is parallel to the y-axis. For clarity we have separately 
pictured the region R and the line L in Figure 15.32b. The line L enters R when y = 

x16 2− −  and exits when = −y x16 2 . This gives us the y-limits of integration.
Finally, as L sweeps across R from left to right, the value of x varies from = −x 4 to 
=x 4. This gives us the x-limits of integration. Therefore, the triple integral of F  over the 

region D is given by

F x y z dz dy dx F x y z dz dy dx, , , , .
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The region D in Example 1 has a great deal of symmetry, which makes visualization 
easier. Even without symmetry, the steps in finding the limits of integration are the same, 
as shown in the next example.

EXAMPLE 2  Set up the limits of integration for evaluating the triple integral of a 
function ( )F x y z, ,  over the tetrahedron D whose vertices are ( ) ( )O A0, 0, 0 ,   1,1, 0 , 
( ) ( )B C0,1, 0 , and  0,1,1 . Use the order of integration dz dy dx.

Solution The solid region D and its “shadow” R in the xy-plane are shown in Figure 15.33a. 
The “top” face is contained in the plane through the points O, A, and C. Following the proce-
dure introduced in Example 7 of Section 12.5, we first form a normal vector to that plane:

   
OA OCn

i j k

i j k1 1 0
0 1 1

,= × = = − +

and then use this vector and the coordinates of O to set up an equation for the plane:

( )( ) ( )− − − + − =
− + =

x y z

x y z

1 0 1 0 1 0 0

0.

 The “side” face of D is parallel to the xz-plane, the “back” face lies in the yz-plane, and the 
“bottom” face is contained in the xy-plane.

To find the z-limits of integration, fix a point ( )x y,  in the shadow region R, and con-
sider the vertical line M that passes through x y,  ( ) and is parallel to the z-axis. This line 
enters D at the height z 0= , and it exits at height = −z y x.

To find the y-limits of integration we again fix a point ( )x y,  in R, but now we consider 
a line L that lies in R, passes through ( )x y, , and is parallel to the y-axis. This line is shown 
in Figure 15.33a and also in the face-on view of R that is pictured in Figure 15.33b. The 
line L enters R when =y x and exits when =y 1.

Finally, as L sweeps across R, the value of x varies from =x 0 to =x 1. Therefore, 
the triple integral of F  over the region D is given by

F x y z dz dy dx F x y z dz dy dx, , , , .
D

y x

x 0

1

0

1

∫∫∫ ∫∫∫( ) ( )=
−

 

FIGURE 15.32 (a) Side view of the solid region from Example 1, looking down the x-axis. The 
dashed right triangle has a hypotenuse of length 5 and sides of lengths 3 and 4. In this side 
view, the shadow region R lies between −4 and 4 on the y-axis. (b) The “shadow region”  
R shown face-on in the xy-plane.
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FIGURE 15.33 (a) The tetrahedron in 
Example 2, showing how the limits of  
integration are found for the order  
dz dy dx. (b) The “shadow region” R 
shown face-on in the xy-plane.
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FIGURE 15.34 Finding the limits of 
integration for evaluating the triple integral 
of a function defined over the tetrahedron 
D (Example 3).
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In the next example we project the region D onto the xz-plane instead of the xy-plane, 
to show how to use a different order of integration.

EXAMPLE 3  Find the volume of the tetrahedron D from Example 2 by integrating 
( ) =F x y z, , 1 over the region using the order dz dy dx. Then do the same calculation 

using the order dy dz dx.

Solution Using the limits of integration that we found in Example 2, we calculate the 
volume of the tetrahedron as follows:
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∫
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Now we will compute the volume using the order of integration dy dz dx. The proce-
dure for finding the limits of integration is similar, except that we find the limits for y first, 
then for z, and then for x. The region D is the same tetrahedron as before, but now the 
“shadow region” R lies in the xz-plane, as shown in Figure 15.34.

To find the y-limits of integration, we fix a point ( )x z,  in the shadow R and consider 
the line M that passes through ( )x z,  and is parallel to the y-axis. As shown in Figure 15.34, 
this line enters D when = +y x z , and it leaves when =y 1.

Next we find the z-limits of integration. The line L that passes through a point ( )x z,  
in R and is parallel to the z-axis enters R when =z 0 and exits when = −z x1  (see 
Figure 15.34).

Finally, as L sweeps across R, the value of x varies from =x 0 to =x 1. Therefore, 
the volume of the tetrahedron is
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Next we set up and evaluate a triple integral over a more complicated region.

Integrand is 1 when 
computing volume.

Integrate over z 
and evaluate.

Integrate over y.

Evaluate.

Integrate over x.

Evaluate.
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EXAMPLE 4 Find the volume of the solid region D enclosed by the surfaces
= +z x y32 2 and = − −z x y8 .2 2

Solution The volume is

V dz dy dx,
D
∫∫∫=

the integral of ( ) =F x y z, , 1 over D. To find the limits of integration for evaluating the 
integral, we first sketch the region. The surfaces (Figure 15.35) intersect on the elliptical 
cylinder + = − −x y x y3 82 2 2 2 or + = >x y z2 4,   0.2 2  The boundary of the region R, 
the projection of D onto the xy-plane, is an ellipse with the same equation: + =x y2 4.2 2  
The “upper” boundary of R is the curve ( )= −y x4 2.2  The lower boundary is the 
curve ( )= − −y x4 2.2

FIGURE 15.35 The volume of the region enclosed by two paraboloids, 
calculated in Example 4.
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Now we find the z-limits of integration. The line M passing through a typical point 
( )x y,  in R parallel to the z-axis enters D at = +z x y32 2 and leaves at = − −z x y8 .2 2

Next we find the y-limits of integration. The line L through ( )x y,  that lies parallel to the 
y-axis enters the region R when ( )= − −y x4 22  and leaves when ( )= −y x4 2.2

Finally, we find the x-limits of integration. As L sweeps across R, the value of x varies 
from = −x 2 at ( )−2, 0, 0  to =x 2 at ( )2, 0, 0 . The volume of D is

V dz dy dx

dz dy dx

D
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Integrand is 1 when computing volume.

Form an iterated integral.
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FIGURE 15.36 The region of integration
in Example 5.
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Average Value of a Function in Space

The average value of a function F  over a solid region D in space is defined by the formula

 F D
D

F dVAverage value   of   over  1
volume of 

  .
D
∫∫∫=  (2)

For example, if ( ) = + +F x y z x y z, , ,2 2 2  then the average value of F  over D is the 
average distance of points in D from the origin. If ( )F x y z, ,  is the temperature at ( )x y z, ,  
on a solid that occupies a region D in space, then the average value of F  over D is the aver-
age temperature of the solid.

EXAMPLE 5  Find the average value of ( ) =F x y z xyz, ,  throughout the cubical 
region D bounded by the coordinate planes and the planes = =x y2,   2, and =z 2 in 
the first octant.

Solution We sketch the cube with enough detail to show the limits of integration 
(Figure 15.36). We then use Equation (2) to calculate the average value of F  over the cube.

The volume of the region D is ( )( )( ) =2 2 2 8. The value of the integral of F  over the 
cube is
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With these values, Equation (2) gives

xyz
xyz dV

Average value of

 over the cube
1

volume
1
8

8 1.
cube
∫∫∫ ( )( )= = =

In evaluating the integral, we chose the order dx dy dz, but any of the other five possible 
orders would have done as well. 

Properties of Triple Integrals

Triple integrals have the same algebraic properties as double and single integrals. Simply 
replace the double integrals in the four properties given in Section 15.2, page 904, with 
triple integrals.

Integrate over z and evaluate.

Integrate over y.

Evaluate.

After integration with the substitution θ=x 2 sin  
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Triple Integrals in Different Iteration Orders

 1. Evaluate the integral in Example 3, taking ( ) =F x y z, , 1 to find 
the volume of the tetrahedron in the order dz dx dy.

 2. Volume of rectangular solid Write six different iterated triple 
integrals for the volume of the rectangular solid in the first octant 
bounded by the coordinate planes and the planes = =x y1,   2, 
and =z 3. Evaluate one of the integrals.

 3. Volume of tetrahedron Write six different iterated triple inte-
grals for the volume of the tetrahedron cut from the first octant by 
the plane + + =x y z6 3 2 6. Evaluate one of the integrals.

 4. Volume of solid Write six different iterated triple integrals for 
the volume of the solid region in the first octant enclosed by the 
cylinder + =x z 42 2  and the plane y 3.=  Evaluate one of the 
integrals.

 5. Volume enclosed by paraboloids Let D be the solid region 
bounded by the paraboloids z x y8 2 2= − −  and z x y .2 2= +  
Write six different triple iterated integrals for the volume of D. 
Evaluate one of the integrals.

 6. Volume inside paraboloid beneath a plane Let D be the 
solid region bounded by the paraboloid z x y2 2= +  and the 
plane =z y2 . Write triple iterated integrals in the order dz dx dy 
and dz dy dx  that give the volume of D. Do not evaluate either 
integral.

Evaluating Triple Iterated Integrals
Evaluate the integrals in Exercises 7–20.

 7. ∫∫∫ ( )+ +x y z dz dy dx2 2 2
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1

-space
q

0

4

0

2

0

7 2

Finding Equivalent Iterated Integrals

 21. Here is the region of integration of the integral

∫∫∫
−

−
dz dy dx.

y

x 0

11

1

1

2

EXERCISES 15.5 

0

z

y

x
1

1

(1, −1, 0)

(1, −1, 1)

(0, −1, 1)

z = y2

z

x

y

11

1

(1, 1, 0)

y

x

z

Top:  y + z = 1

(−1, 1, 0)

Side:
y = x2

−11

Rewrite the integral as an equivalent iterated integral in the order

 a. dy dz dx  b. dy dx dz

 c. dx dy dz  d. dx dz dy

 e. dz dx dy.

 22. Here is the region of integration of the integral

∫∫∫ −
dz dy dx

y

01

0

0

1 2

Rewrite the integral as an equivalent iterated integral in the order

 a. dy dz dx  b. dy dx dz

 c. dx dy dz  d. dx dz dy

 e. dz dx dy.

Finding Volumes Using Triple Integrals
Find the volumes of the solid regions in Exercises 23–36.

 23. The region between the cylinder =z y 2 and the xy-plane that is 
bounded by the planes = = = − =x x y y0,   1,   1,   1



 15.5  Triple Integrals in Rectangular Coordinates 927

z

y

x

(1, 0, 0)

(0, 2, 0)

(0, 0, 3)

z

y

x

z

y

x

 24. The region in the first octant bounded by the coordinate planes 
and the planes + = + =x z y z1,   2 2

 29. The region common to the interiors of the cylinders + =x y 12 2  
and + =x z 1,2 2  one-eighth of which is shown in the accompa-
nying figure

z

y

x

z

y

x

z

y
x

z

y

x

z

y

x

 25. The region in the first octant bounded by the coordinate planes, 
the plane + =y z 2, and the cylinder = −x y4 2

 26. The wedge cut from the cylinder + =x y 12 2  with ≥z 0 by the 
planes = −z y and =z 0

 27. The tetrahedron in the first octant bounded by the coordinate planes 
and the plane passing through ( ) ( ) ( )1, 0, 0 , 0, 2, 0 , and 0, 0, 3

 28. The region in the first octant bounded by the coordinate planes, the 
plane = −y x1 , and the surface π( )= ≤ ≤z x xcos 2 ,  0 1

z

y
x

x2 + z2 = 1

x2 + y2 = 1

 30. The region in the first octant bounded by the coordinate planes 
and the surface = − −z x y4 2

 31. The region in the first octant bounded by the coordinate planes, 
the plane + =x y 4, and the cylinder + =y z4 162 2

 32. The region cut from the cylinder + =x y 42 2  by the plane 
=z 0 and the plane + =x z 3
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 33. The region between the planes + + =x y z2 2 and 
+ + =x y z2 2   4 in the first octant

 34. The finite region bounded by the planes =z x, 
+ = = =x z z y y8,   ,   8, and =z 0

 35. The region cut from the solid elliptical cylinder + ≤x y4 42 2  
by the xy-plane and the plane = +z x 2

 36. The region bounded in back by the plane =x 0, on the front and 
sides by the parabolic cylinder = −x y1 ,2  on the top by the 
paraboloid = +z x y ,2 2  and on the bottom by the xy-plane

Average Values
In Exercises 37–40, find the average value of ( )F x y z, ,  over the given 
region.

 37. ( ) = +F x y z x, , 92  over the cube in the first octant bounded by 
the coordinate planes and the planes = =x y2,   2, and =z 2

 38. ( ) = + −F x y z x y z, ,  over the rectangular box in the first octant 
bounded by the coordinate planes and the planes = =x y1,   1, 
and =z 2

 39. ( ) = + +F x y z x y z, , 2 2 2 over the cube in the first octant 
bounded by the coordinate planes and the planes = =x y1,   1, 
and =z 1

 40. ( ) =F x y z xyz, ,  over the cube in the first octant bounded by the 
coordinate planes and the planes = =x y2,   2, and =z 2

Changing the Order of Integration
Evaluate the integrals in Exercises 41–44 by changing the order of 
integration in an appropriate way.

 41. ∫∫∫
( )x

z
dx dy dz

4 cos

2y

2

2

2

0

1

0

4

 42. xze dy dx dz12 zy

x

1

0

1

0

1
2

2∫∫∫

 43. ∫∫∫
π πe y

y
dx dy dz

sinx

z

2 2

20

ln 31

0

1

3

 44. ∫∫∫ −

− z
z

dy dz dx
sin 2
4

xx

00

4

0

2 2

Theory and Examples

 45. Finding an upper limit of an iterated integral Solve for a:

∫∫∫ =
− −− −

dz dy dx 4
15

.
a

x ya x 4

0

4

0

1 22

 46. Ellipsoid For what value of c is the volume of the ellipsoid 
( ) ( )+ + =x y z c2 12 2 2  equal to π8 ?

 47. Minimizing a triple integral What domain D in space mini-
mizes the value of the integral

x y z dV4 4 4 ?
D

2 2 2∫∫∫ ( )+ + −

Give reasons for your answer.

 48. Maximizing a triple integral What domain D in space maxi-
mizes the value of the integral

x y z dV1 ?
D

2 2 2∫∫∫ ( )− − −

Give reasons for your answer.

COMPUTER EXPLORATIONS
In Exercises 49–52, use a CAS integration utility to evaluate the triple 
integral of the given function over the specified solid region.

 49. ( ) =F x y z x y z, , 2 2  over the solid cylinder bounded by 
+ =x y 12 2  and the planes =z 0 and =z 1

 50. ( ) =F x y z xyz, ,  over the solid bounded below by the parabo-
loid = +z x y2 2 and above by the plane =z 1

 51. ( )
( )

=
+ +

F x y z z
x y z

, ,
2 2 2 3 2  over the solid bounded below 

by the cone = +z x y2 2  and above by the plane =z 1

 52. ( ) = + +F x y z x y z, , 4 2 2 over the solid sphere + +x y2 2  
≤z 12

FIGURE 15.37 To define an object’s 
mass, we first imagine it to be partitioned 
into a finite number of mass elements ∆m .k

x

z

y

D
(xk, yk, zk)

Δmk = d(xk, yk, zk) ΔVk

15.6 Applications

This section shows how to calculate the masses and moments of two- and three- 
dimensional objects in Cartesian coordinates. The definitions and ideas are similar to 
the single-variable case we studied in Section 6.6, but now we can consider more general 
situations.

Masses and First Moments

If δ( )x y z, ,  is the density (mass per unit volume) of an object occupying a solid region D 
in space, the integral of δ  over D gives the mass of the object. To see why, imagine 
partitioning the object into n mass elements like the one in Figure 15.37. The object’s 
mass is the limit

M m x y z V x y z dVlim lim , , , , .
n

k

n

k
n

k

n

k k k k

D1 1
∑ ∑ ∫∫∫δ δ( ) ( )= ∆ = ∆ =

→∞ = →∞ =

The first moment of a solid region D about a coordinate plane is defined as the triple 
integral over D of the (signed) distance from a point ( )x y z, ,  in D to the plane multiplied 


