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OVERVIEW In this chapter we define the double integral of a function of two variables 
f x y, ( ) over a region in the plane as the limit of approximating Riemann sums. Just as a 
single integral can represent signed area, so can a double integral represent signed volume. 
Double integrals can be evaluated using the Fundamental Theorem of Calculus studied in 
Section 5.4, but now the evaluations are done twice by integrating with respect to each of 
the variables x and y in turn. Double integrals can be used to find areas of more general 
regions in the plane than those encountered in Chapter 5. Moreover, just as the Substitution 
Rule could simplify finding single integrals, we can sometimes use polar coordinates to 
simplify computing a double integral. We study more general substitutions for evaluating 
double integrals as well.

We also dene the triple integral of a function of three variables f x y z,   ,  ( ) over a 
region in space. Triple integrals can be used to nd volumes of still more general regions 
in space, and their evaluation is like that of double integrals with yet a third evaluation. 
Cylindrical or spherical coordinates can sometimes be used to simplify the calculation of 
a triple integral, and we investigate those techniques. Double and triple integrals have a 
number of applications, such as calculating the average value of a multivariable function, 
and nding moments and centers of mass.

Multiple Integrals

15

15.1 Double and Iterated Integrals over Rectangles

In Chapter 5 we defined the definite integral of a function f x( ) over an interval a b,  [ ] as a 
limit of Riemann sums. In this section we extend this idea to define the double integral of 
a function of two variables f x y,  ( ) over a bounded rectangle R in the plane. The Riemann 
sums for the integral of a single-variable function f x( ) are obtained by partitioning a finite 
interval into thin subintervals, multiplying the width of each subinterval by the value of f  
at a point ck inside that subinterval, and then adding together all the products. A similar 
method of partitioning, multiplying, and summing is used to construct double integrals as 
limits of approximating Riemann sums.

Double Integrals

We begin our investigation of double integrals by considering the simplest type of planar 
region, a rectangle. We consider a function f x y, ( ) defined on a rectangular region R,

R a x b c y d: , .≤ ≤ ≤ ≤

We subdivide R into small rectangles using a network of lines parallel to the x- and y-axes 
(Figure 15.1). The lines divide R into n rectangular pieces, where the number of such 
pieces n gets large as the width and height of each piece gets small. These rectangles form 
a partition of R. A small rectangular piece of width x∆  and height y∆  has area 

FIGURE 15.1 Rectangular grid parti-
tioning the region R into small rectangles 
of area ∆ = ∆ ∆A x y .k k k
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FIGURE 15.2 Approximating solids 
with rectangular boxes leads us to define 
the volumes of more general solids as 
double integrals. The volume of the solid 
shown here is the double integral of f x y,  ( ) 
over the base region R.
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∆ = ∆ ∆A x y. If we number the small pieces partitioning R in some order, then their areas are 
given by numbers ∆ ∆ ∆…A A A, , , ,n1 2  where Ak∆  is the area of the kth small rectangle.

To form a Riemann sum over R, we choose a point x y, k k( ) in the kth small rectangle, 
multiply the value of f  at that point by the area A ,k∆  and add together the products:

S f x y A,  .n
k

n

k k k
1
∑ ( )= ∆
=

Depending on how we pick x y, k k( ) in the kth small rectangle, we may get different values 
for S .n

We are interested in what happens to these Riemann sums as the widths and heights of 
all the small rectangles in the partition of R approach zero. The norm of a partition P, writ-
ten P , is the largest width or height of any rectangle in the partition. If =P 0.1, then 
all the rectangles in the partition of R have width at most 0.1 and height at most 0.1. 
Sometimes the Riemann sums converge as the norm of P goes to zero, which is written 
→P 0. The resulting limit is then written as

∑ ( )∆
→ =

f x y Alim ,  .
P

k

n

k k k
0

1

As P 0→  and the rectangles get narrow and short, their number n increases, so we can 
also write this limit as

f x y Alim ,  ,
n

k

n

k k k
1
∑ ( )∆

→∞ =

with the understanding that →P 0, and hence A 0k∆ → , as n → ∞.
Many choices are involved in a limit of this kind. The collection of small rectangles is 

determined by the grid of vertical and horizontal lines that determine a rectangular parti-
tion of R. In each of the resulting small rectangles there is a choice of an arbitrary point 
x y, k k( ) at which f  is evaluated. These choices together determine a single Riemann sum. 

To form a limit, we repeat the whole process again and again, choosing partitions whose 
rectangle widths and heights both go to zero and whose number goes to infinity.

When a limit of the sums Sn exists, giving the same limiting value no matter what 
choices are made, then the function f  is said to be integrable and the limit is called the 
double integral of f  over R, which is written as

f x y dA f x y dx dy,  or ,  .
R R

∫∫ ∫∫( ) ( )

It can be shown that if f x y, ( ) is a continuous function throughout R, then f  is integrable, 
as in the single-variable case discussed in Chapter 5. Many discontinuous functions are 
also integrable, including functions that are discontinuous only on a finite number of points 
or smooth curves. We leave the proof of these facts to a more advanced text.

Double Integrals as Volumes

When f x y, ( ) is a positive function over a rectangular region R in the xy-plane, we may 
interpret the double integral of f  over R as the volume of the three-dimensional solid 
region over the xy-plane bounded below by R and above by the surface z f x y,  ( )=  
(Figure 15.2). Each term f x y A, k k k( )∆  in the sum ∑ ( )= ∆S f x y A, n k k k  is the vol-
ume of a vertical rectangular box that approximates the volume of the portion of the solid 
that stands directly above the base A .k∆  The sum Sn thus approximates what we want to 
call the total volume of the solid. We define this volume to be

S f x y dAVolume lim ,   ,
n

n

R

∫∫ ( )= =
→∞

where A 0k∆ →  as n .→ ∞
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As you might expect, this more general method of calculating volume agrees with the 
methods in Chapter 6, but we do not prove this here. Figure 15.3 shows Riemann sum 
approximations to the volume becoming more accurate as the number n of boxes increases.

FIGURE 15.3 As n increases, the Riemann sum approximations approach the total 
volume of the solid shown in Figure 15.2.

(a) n = 16 (b) n = 64 (c) n = 256

Fubini’s Theorem for Calculating Double Integrals

Suppose that we wish to calculate the volume under the plane z x y4= − −  over the 
rectangular region ≤ ≤ ≤ ≤R x y: 0 2,  0 1 in the xy-plane. If we apply the method of 
slicing from Section 6.1, with slices perpendicular to the x-axis (Figure 15.4), then the 
volume is

 A x dx( ) ,
x

x

0

2

∫ =
=

 (1)

where A x( ) is the cross-sectional area at x. For each value of x, we may calculate A x( ) as 
the integral

 A x x y dy( ) 4 ,
y

y

0

1

∫ ( )= − −
=

=
 (2)

which is the area under the curve z x y4= − −  in the plane of the cross-section at x. In 
calculating A x( ), x is held fixed and the integration takes place with respect to y. Combining 
Equations (1) and (2), we see that the volume of the entire solid is

∫ ∫∫

∫ ∫

( )

( )

( )= = − −

= − −
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We often omit parentheses separating the two integrals in the formula above and write

 x y dy dxVolume 4 .
0

1

0

2

∫∫ ( )= − −  (3)

The expression on the right, called an iterated or repeated integral, says that the volume 
is obtained by integrating x y4 − −  with respect to y from y 0=  to y 1=  while holding 
x fixed, and then integrating the resulting expression in x from x 0=  to x 2.=  The limits 
of integration 0 and 1 are associated with y, so they are placed on the integral closest to dy. 
The other limits of integration, 0 and 2, are associated with the variable x, so they are 
placed on the outside integral symbol that is paired with dx.

FIGURE 15.4 To obtain the cross-
sectional area A x( ), we hold x fixed and 
integrate with respect to y.
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FIGURE 15.5 To obtain the cross-
sectional area A y( ), we hold y fixed and 
integrate with respect to x.
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THEOREM 1—Fubini’s Theorem (First Form)
If f x y,  ( ) is continuous throughout the rectangular region ≤ ≤R a x b: , 
c y d,≤ ≤  then

f x y dA f x y dx dy f x y dy dx,  ,   ,   .
R

a

b

c

d

c

d

a

b

∫∫ ∫∫ ∫∫( ) ( ) ( )= =

What would have happened if we had calculated the volume by slicing with planes 
perpendicular to the y-axis (Figure 15.5)? As a function of y, the typical cross-sectional 
area is

 A y x y dx x x xy y( ) 4 4
2

6 2 .
x

x

x

x

0

2 2

0

2

∫ ( )= − − = − −





= −
=

=

=

=

 (4)

The volume of the entire solid is therefore

A y dy y dy y yVolume ( ) 6 2 6 5,
y

y

y

y

0

1
2

0

1

0

1

∫ ∫ ( )= = − = −





 =

=

=

=

=

in agreement with our earlier calculation.
Again, we may give a formula for the volume as an iterated integral by writing

x y dx dyVolume 4 .
0

2

0

1

∫∫ ( )= − −

The expression on the right says we can find the volume by integrating x y4 − −  with 
respect to x from x 0=  to x 2=  as in Equation (4) and integrating the result with respect 
to y from y 0=  to y 1.=  In this iterated integral, the order of integration is first x and 
then y, the reverse of the order in Equation (3).

What do these two volume calculations with iterated integrals have to do with the 
double integral

x y dA4
R
∫∫ ( )− −

over the rectangle ≤ ≤ ≤ ≤R x y: 0 2,  0 1? The answer is that both iterated integrals 
give the value of the double integral. This is what we would reasonably expect, since the 
double integral measures the volume of the same region as the two iterated integrals. A 
theorem published in 1907 by Guido Fubini says that the double integral of any continu-
ous function over a rectangle can be calculated as an iterated integral in either order of 
integration. (Fubini proved his theorem in greater generality, but this is what it says in our 
setting.)

Fubini’s Theorem says that double integrals over rectangles can be calculated as iter-
ated integrals. Thus, we can evaluate a double integral by integrating with respect to one 
variable at a time using the Fundamental Theorem of Calculus.

Fubini’s Theorem also says that we may calculate the double integral by integrating in 
either order, a genuine convenience. When we calculate a volume by slicing, we may use 
either planes perpendicular to the x-axis or planes perpendicular to the y-axis.

EXAMPLE 1  Calculate f x y dA,R ( )∫∫  for

f x y x y R x y, 100 6 and : 0 2, 1 1.2( ) = − ≤ ≤ − ≤ ≤
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Solution Figure 15.6 displays the volume beneath the surface. By Fubini’s Theorem,

f x y dA x y dx dy x x y dy

y dy y y

, 100 6 100 2
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Reversing the order of integration gives the same answer:

x y dy dx y x y dx

x x dx

dx

100 6 100 3

100 3 100 3

200 400.
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∫∫ ∫

∫

∫

( )

( ) ( )[ ]

− = −







= − − − −

= =

− =−

=

EXAMPLE 2  Find the volume of the region bounded above by the elliptical parabo-
loid z x y10 32 2= + +  and below by the rectangle ≤ ≤ ≤ ≤R x y: 0 1,  0 2.

Solution The surface and volume are shown in Figure 15.7. The volume is given by the 
double integral

V x y dA x y dy dx

y x y y dx

x dx x x
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FIGURE 15.6 The double integral 
f x y dA,R ( )∫∫  gives the volume under 

this surface over the rectangular region R 
(Example 1).
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Evaluating Iterated Integrals
In Exercises 1–14, evaluate the iterated integral.

 1. xy dy dx2
0

4

1

2

∫∫  2. x y dy dx
1

1

0

2

∫∫ ( )−
−

 3. x y dx dy1
1

1

1

0

∫∫ ( )+ +
−−

 4. x y
dx dy1

2

2 2

0

1

0

1

∫∫ ( )− +

 5. ∫∫ ( )− y dy dx4 2

0

2

0

3
 6. x y xy dy dx22

2

0

0

3

∫∫ ( )−
−

 7. y
xy

dx dy
10

1

0

1

∫∫ +
 8. x y dx dy

20

4

1

4

∫∫ ( )+

 9. ∫∫ +e dy dxx y2

1

ln 5

0

ln 2
 10. ∫∫ xye dy dxx

1

2

0

1

 11. y x dx dysin
0

2

1

2

∫∫
π

−
 12. x y dx dysin cos

0

2

∫∫ ( )+
π

π

π

 13. 
x

xy
dx dy

lne

11

4

∫∫  14. x y dy dxln
1

2

1

2

∫∫−

 15. Find all values of the constant c so that x y dx dy2 3
c

00

1

∫∫ ( )+ = .

 16. Find all values of the constant c so that 

xy dy dx c1 4 4
c

0

2

1 ∫∫ ( )+ = +
−

.

Evaluating Double Integrals over Rectangles
In Exercises 17–24, evaluate the double integral over the given 
region R.

 17. ∫∫ ( )− ≤ ≤ ≤ ≤y x dA R x y6 2 , : 0 1, 0 2
R

2

 18. x
y

dA R x y,  : 0 4, 1 2
R

2∫∫





 ≤ ≤ ≤ ≤

EXERCISES 15.1

FIGURE 15.7 The double 
integral f x y dA,  R ( )∫∫  gives the 
volume under this surface over the 
rectangular region R (Example 2).
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FIGURE 15.8 A rectangular grid parti-
tioning a bounded, nonrectangular region 
into rectangular cells.
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 19. xy y dA R x ycos , : 1 1, 0
R
∫∫ π− ≤ ≤ ≤ ≤

 20. y x y dA R x ysin , : 0, 0
R
∫∫ π π( )+ − ≤ ≤ ≤ ≤

 21. e dA R x y, : 0 ln 2, 0 ln 2x y

R
∫∫ ≤ ≤ ≤ ≤−

 22. xye dA R x y, : 0 2, 0 1xy

R

2∫∫ ≤ ≤ ≤ ≤

 23. 
xy

x
dA R x y

1
, : 0 1, 0 2

R

3

2∫∫ +
≤ ≤ ≤ ≤

 24. 
y

x y
dA R x y

1
, : 0 1, 0 1

R
2 2∫∫ +

≤ ≤ ≤ ≤

In Exercises 25 and 26, integrate f  over the given region.

 25. Square f x y xy, 1( ) ( )=  over the square x1 2,≤ ≤  
y1 2≤ ≤

 26. Rectangle f x y y xy, cos( ) =  over the rectangle x0 ,π≤ ≤  
y0 1≤ ≤

In Exercises 27 and 28, sketch the solid whose volume is given by the 
specified integral.

 27. x y dy dx9 2 2

0

2

0

1

∫∫ ( )− −  28. x y dx dy7
1

4

0

3

∫∫ ( )− −

 29. Find the volume of the region bounded above by the parabo-
loid = +z x y2 2 and below by the square − ≤ ≤R x: 1 1, 
− ≤ ≤y1 1.

 30. Find the volume of the region bounded above by the elliptical parab-
oloid z x y16 2 2= − −  and below by the square ≤ ≤R x: 0 2, 
≤ ≤y0 2.

 31. Find the volume of the region bounded above by the plane 
= − −z x y2  and below by the square ≤ ≤R x: 0 1, 
≤ ≤y0 1.

 32. Find the volume of the region bounded above by the plane 
=z y 2 and below by the rectangle ≤ ≤R x: 0 4, ≤ ≤y0 2.

 33. Find the volume of the region bounded above by the surface 
=z x y2 sin cos  and below by the rectangle π≤ ≤R x: 0 2, 

π≤ ≤y0 4.

 34. Find the volume of the region bounded above by the sur-
face = −z y4 2 and below by the rectangle ≤ ≤R x: 0 1, 
≤ ≤y0 2.

 35. Find a value of the constant k so that ∫∫ =kx y dx dy 1.2

0

3

1

2

 36. Evaluate ∫∫
π

−
x y dy dxsin .

0

2

1

1

 37. Use Fubini’s Theorem to evaluate

∫∫ +
x

xy
dx dy

1
.

0

1

0

2

 38. Use Fubini’s Theorem to evaluate

∫∫ xe dx dy.xy

0

3

0

1

 39. Use a software application to compute the integrals

 a. ∫∫ ( )

−
+

y x
x y

dx dy30

2

0

1
 b. ∫∫ ( )

−
+

y x
x y

dy dx30

1

0

2

Explain why your results do not contradict Fubini’s Theorem.

 40. If ( )f x y,  is continuous over ≤ ≤ ≤ ≤R a x b c y d:  ,   and

∫∫ υ υ( ) ( )=F x y f u d du, ,
c

y

a

x

on the interior of R, find the second partial derivatives Fxy and F .yx

T

15.2 Double Integrals over General Regions

In this section we define and evaluate double integrals over bounded regions in the plane 
that are more general than rectangles. These double integrals are also evaluated as iter-
ated integrals, with the main practical problem being that of determining the limits of 
integration. Since the region of integration may have boundaries other than line segments 
parallel to the coordinate axes, the limits of integration often involve variables, not just 
constants.

Double Integrals over Bounded, Nonrectangular Regions

To define the double integral of a function ( )f x y,  over a bounded, nonrectangular region 
R, such as the one in Figure 15.8, we again begin by covering R with a grid of small 
rectangular cells whose union contains all points of R. This time, however, we cannot 
exactly fill R with a finite number of rectangles lying inside R since its boundary is 
curved, and some of the small rectangles in the grid lie partly outside R. A partition of R 
is formed by taking the rectangles that lie completely inside it, not using any that are 
either partly or completely outside. For commonly arising regions, more and more of R 
is included as the norm of a partition (the largest width or height of any rectangle used) 
approaches zero.


