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y = mx + b

The line y mx b= +  determined by these values of m and b 
is called the least squares line, regression line, or trend line for 
the data under study. Finding a least squares line lets you

1. summarize data with a simple expression,

2. predict values of y for other, experimentally untried values of x,

3. handle data analytically.

 a. Plot the function over the given rectangle.

 b. Plot some level curves in the rectangle.

 c. Calculate the function’s first partial derivatives and use the 
CAS equation solver to find the critical points. How are the 
critical points related to the level curves plotted in part (b)? 
Which critical points, if any, appear to give a saddle point? 
Give reasons for your answer.

 d. Calculate the function’s second partial derivatives and find the 
discriminant f f f .xx yy xy

2−

 e. Using the max-min tests, classify the critical points found in 
part (c). Are your findings consistent with your discussion in 
part (c)?

 71. f x y x y xy x y, 3 , 5 5, 5 52 3( ) = + − − ≤ ≤ − ≤ ≤

 72. f x y x xy y x y, 3 , 2 2, 2 23 2 2( ) = − + − ≤ ≤ − ≤ ≤

 73. ( ) = + − − + − ≤ ≤f x y x y x y x, 8 6 16, 3 3,4 2 2  
− ≤ ≤y6 6

 74. ( ) = + − − + − ≤ ≤f x y x y x y x, 2 2 2 3, 3 2 3 2,4 4 2 2  
− ≤ ≤y3 2 3 2

 75. ( ) = + − + −f x y x x x xy x, 5 18 30 30 120 ,6 5 4 2 3

− ≤ ≤ − ≤ ≤x y4 3, 2 2

 76. ( )
( ) ( )

( ) ( )
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=

+ ≠
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− ≤ ≤ − ≤ ≤x y2 2, 2 2

In Exercises 68–70, use Equations (2) and (3) to find the least squares 
line for each set of data points. Then use the linear equation you obtain 
to predict the value of y that would correspond to x 4.=

 68. 2, 0 , 0, 2 , 2, 3( ) ( ) ( )−

 69. 1, 2 , 0,1 , 3, 4( ) ( ) ( )− −

 70. 0, 0 , 1, 2 , 2, 3( ) ( ) ( )

COMPUTER EXPLORATIONS
In Exercises 71–76, you will explore functions to identify their local 
extrema. Use a CAS to perform the following steps:

Sometimes we need to find the extreme values of a function whose domain is constrained 
to lie within some particular subset of the plane—for example, a disk, a closed triangular 
region, or along a curve. We saw an instance of this situation in Example 6 of the previous 
section. Here we explore a powerful method for finding extreme values of constrained 
functions: the method of Lagrange multipliers.

Constrained Maxima and Minima

To gain some insight, we first consider a problem where a constrained minimum can be 
found by eliminating a variable.

EXAMPLE 1  Find the point p x y z, ,( ) on the plane x y z2 5 0+ − − =  that is  
closest to the origin.

Solution The problem asks us to find the minimum value of the function

OP x y z x y z0 0 02 2 2 2 2 2
 

( )( ) ( )= − + − + − = + +

subject to the constraint that

x y z2 5 0.+ − − =

Since OP
 

 has a minimum value wherever the function

f x y z x y z, , 2 2 2( ) = + +
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870 Chapter 14 Partial Derivatives

has a minimum value, we may solve the problem by finding the minimum value of 
f x y z, ,( ) subject to the constraint x y z2 5 0+ − − =  (thus avoiding square roots). If 
we regard x and y as the independent variables in this equation and write z as

z x y2 5,= + −

our problem reduces to finding the points x y,( ) at which the function

h x y f x y x y x y x y, , , 2 5 2 52 2 2( ) ( ) ( )= + − = + + + −

has its minimum value or values. Since the domain of h is the entire xy-plane, the First 
Derivative Theorem of Section 14.7 tells us that any minima that h might have must occur 
at points where

h x x y h y x y2 2 2 5 2 0, 2 2 2 5 0.x y( ) ( )( )= + + − = = + + − =

This leads to

x y x y10 4 20, 4 4 10,+ = + =

which has the solution

x y5
3

, 5
6

.= =

We may apply a geometric argument together with the Second Derivative Test to show that 
these values minimize h. The z-coordinate of the corresponding point on the plane 
z x y2 5= + −  is

z 2 5
3

5
6

5 5
6

.( )= + − = −

Therefore, the point we seek is

PClosest point: 5
3

, 5
6

, 5
6

.( )−
The distance from P to the origin is 5 6 2.04.≈  

FIGURE 14.53 The hyperbolic cylinder 
x z 1 02 2− − =  in Example 2.

(1, 0, 0)
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Attempts to solve a constrained maximum or minimum problem by substitution, as we 
might call the method of Example 1, do not always go smoothly.

EXAMPLE 2  Find the points on the hyperbolic cylinder x z 1 02 2− − =  that are 
closest to the origin.

Solution 1 The cylinder is shown in Figure 14.53. We seek the points on the cylinder clos-
est to the origin. These are the points whose coordinates minimize the value of the function

f x y z x y z, , 2 2 2( ) = + +     Square of the distance

subject to the constraint that x z 1 0.2 2− − =  If we regard x and y as independent vari-
ables in the constraint equation, then

z x 1,2 2= −

and the values of f x y z x y z, , 2 2 2( ) = + +  on the cylinder are given by the function

h x y x y x x y, 1 2 1.2 2 2 2 2( ) ( )= + + − = + −

To find the points on the cylinder whose coordinates minimize f , we look for the points in 
the xy-plane whose coordinates minimize h. The only extreme value of h occurs where

h x h y4 0 and 2 0,x y= = = =
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that is, at the point 0, 0( ). But there are no points on the cylinder where both x and y are 
zero. What went wrong?

What happened is that the First Derivative Theorem found (as it should have) the point 
in the domain of h where h has a minimum value. We, on the other hand, want the points 
on the cylinder where h has a minimum value. Although the domain of h is the entire xy-
plane, the domain from which we can select the first two coordinates of the points x y z, ,( ) 
on the cylinder is restricted to the projection, or “shadow” of the cylinder on the xy-plane; 
it does not include the band between the lines x 1= −  and x 1=  (Figure 14.54).

We can avoid this problem if we treat y and z as independent variables (instead of x 
and y) and express x in terms of y and z as

x z 1.2 2= +

With this substitution, f x y z x y z, , 2 2 2( ) = + +  becomes

k y z z y z y z, 1 1 22 2 2 2 2( ) ( )= + + + = + +

and we look for the points where k takes on its smallest value. The domain of k in the yz-
plane now matches the domain from which we select the y- and z-coordinates of the points 
x y z, ,( ) on the cylinder. Hence, the points that minimize k in the plane will have corre-

sponding points on the cylinder. The smallest values of k occur where

k y k z2 0 and 4 0,y z= = = =

or where y z 0.= =  This leads to

x z x1 1, 1.2 2= + = = ±

The corresponding points on the cylinder are 1, 0, 0 .( )±  We can see from the inequality

k y z y z, 1 2 12 2( ) = + + ≥

that the points 1, 0, 0( )±  give a minimum value for k. We can also see that the minimum 
distance from the origin to a point on the cylinder is 1 unit.

FIGURE 14.54 The region in the xy-
plane from which the first two coordinates 
of the points x y z, ,( ) on the hyperbolic 
cylinder x z 12 2− =  are selected excludes 
the band x1 1− < <  in the xy-plane 
(Example 2).
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FIGURE 14.55 A sphere expanding 
like a soap bubble centered at the origin 
until it just touches the hyperbolic cylinder 
x z 1 02 2− − =  (Example 2).
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x2 + y2 + z2 − a2 = 0
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Solution 2 Another way to find the points on the cylinder closest to the origin is to imag-
ine a small sphere centered at the origin expanding like a soap bubble until it just touches 
the cylinder (Figure 14.55). At each point of contact, the cylinder and sphere have the same 
tangent plane and normal line. Therefore, if the sphere and cylinder are represented as the 
level surfaces obtained by setting

f x y z x y z a g x y z x z, , and , , 12 2 2 2 2 2( ) ( )= + + − = − −

equal to 0, then the gradients f∇  and g∇  will be parallel where the surfaces touch. At any 
point of contact, we should therefore be able to find a scalar λ (“lambda”) such that

f g,λ∇ = ∇

or

x y z x zi j k i k2 2 2 2 2 .λ( )+ + = −

Thus, the coordinates x, y, and z of any point of tangency will have to satisfy the three sca-
lar equations

x x y z z2 2 , 2 0, 2 2 .λ λ= = = −

For what values of λ will a point x y z, ,( ) whose coordinates satisfy these scalar equa-
tions also lie on the surface x z 1 0?2 2− − =  To answer this question, we use our 
knowledge that no point on the surface has a zero x-coordinate to conclude that x 0.≠  
Hence, x x2 2λ=  only if

2 2 , or 1.λ λ= =

λ is the Greek letter lambda.
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For 1,λ =  the equation z z2 2λ= −  becomes z z2 2 .= −  If this equation is to be satisfied 
as well, z must be zero. Since y 0=  also (from the equation y2 0= ), we conclude that 
the points we seek all have coordinates of the form

( )x, 0, 0 .

What points on the surface − =x z 12 2  have coordinates of this form? The answer is the 
points ( )x, 0, 0  for which

( )− = = = ±x x x0 1, 1, or 1.2 2 2

The points on the cylinder closest to the origin are the points ( )±1, 0, 0 . 

THEOREM 12—The Orthogonal Gradient Theorem
Suppose that ( )f x y z, ,  is differentiable in a region whose interior contains a 
smooth curve

= + +C t x t y t z tr i j k: ( ) ( ) ( ) ( ) .

If P0 is a point on C where f  has a local maximum or minimum relative to its 
values on C, then ∇f  is orthogonal to the curve’s tangent vector ′r  at P .0

Proof  The values of f  on C are given by the composition ( )f x t y t z t( ), ( ), ( ) , whose 
derivative with respect to t is

= ∂
∂

+ ∂
∂

+ ∂
∂

= ∇ ⋅ ′df
dt

f
x

dx
dt

f
y

dy
dt

f
z

dz
dt

f r .

At any point P0 where f  has a local maximum or minimum relative to its values on the 
curve, =df dt 0, so

∇ ⋅ ′ =f r 0. 

The Method of Lagrange Multipliers

In Solution 2 of Example 2, we used the method of Lagrange multipliers. The method 
says that the local extreme values of a function ( )f x y z, ,  whose variables are subject to a 
constraint ( ) =g x y z, , 0 are to be found on the surface =g 0 among the points where

λ∇ = ∇f g

for some scalar λ (called a Lagrange multiplier).
To explore the method further and see why it works, we first make the following 

observation, which we state as a theorem.

By dropping the z-terms in Theorem 12, we obtain a similar result for functions of two 
variables.

Theorem 12 is the key to the method of Lagrange multipliers. Suppose that ( )f x y z, ,  
and ( )g x y z, ,  are differentiable and that P0 is a point on the surface ( ) =g x y z, , 0 where f  
has a local maximum or minimum value relative to its other values on the surface. We 
assume also that ∇ ≠g 0  at points on the surface ( ) =g x y z, , 0. Then f  takes on a local 
maximum or minimum at P0 relative to its values on every differentiable curve through P0 
on the surface ( ) =g x y z, , 0. Therefore, ∇f  is orthogonal to the tangent vector of every 

COROLLARY At the points on a smooth curve = +t x t y tr i j( ) ( ) ( )  where a 
differentiable function ( )f x y,  takes on its local maxima or minima relative to its 
values on the curve, we have ∇ ⋅ ′ =f r 0.
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such differentiable curve through P .0  Moreover, so is g∇  (because ∇g is perpendicular to 
the level surface =g 0, as we saw in Section 14.5). Therefore, at ∇P f,0  is some scalar 
multiple λ of ∇g.

Some care must be used in applying this method. An extreme value may not actually exist 
(Exercise 45).

EXAMPLE 3  Find the largest and smallest values that the function

( ) =f x y xy,

takes on the ellipse (Figure 14.56)

+ =x y
8 2

1.
2 2

Solution We want to find the extreme values of ( ) =f x y xy,  subject to the constraint

( ) = + − =g x y x y
,

8 2
1 0.

2 2

To do so, we first find the values of x, y, and λ for which

λ ( )∇ = ∇ =f g g x yand , 0.

The gradient equation in Equations (1) gives

λ λ+ = +y x x yi j i j
4

,

from which we find

y x x y
4

, ,λ λ= =

and

y y y
4

( )
4

,
2λ λ λ= =     Caution: Don’t cancel y without 

considering the case where =y 0.

so that

λ= = ±y 0 or 2.

We now consider these two cases.

Case 1: If =y 0, then = =x y 0. But ( )0, 0  is not on the ellipse. Hence, ≠y 0.

Case 2: If ≠y 0, then λ = ±2 and = ±x y2 . Substituting this in the equation 
( ) =g x y, 0 gives

( )± + = + = = ±y y
y y y

2
8 2

1, 4 4 8 and 1.
2 2

2 2

The Method of Lagrange Multipliers
Suppose that ( )f x y z, ,  and ( )g x y z, ,  are differentiable and ∇ ≠g 0  when 
( ) =g x y z, , 0. To find the local maximum and minimum values of f  subject to 

the constraint ( ) =g x y z, , 0 (if these exist), find the values of x, y, z, and λ that 
simultaneously satisfy the equations

 λ ( )∇ = ∇ =f g g x y zand , , 0. (1)

If they exist, absolute extrema can be found by comparing these values of f  at 
each critical point satisfying Equation (1). For functions of two independent vari-
ables, the condition is similar, but without the variable z.

FIGURE 14.56 Example 3 shows how 
to find the largest and smallest values of 
the product xy on this ellipse.

y

x
0 2

"

2

"

2 +      = 1
x2

8
y2

2
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The function ( ) =f x y xy,  therefore has critical points on the ellipse at the four points 
( ) ( )± ± −2,1 , 2, 1 . The extreme values are found by examining the values of f  at these four 
points. The absolute maximum is = − − =f f(2,1) ( 2, 1) 2, and the absolute minimum  
is − = − = −f f( 2,1) (2, 1) 2.

The Geometry of the Solution The level curves of the function ( ) =f x y xy,  are  
the hyperbolas =xy c (Figure 14.57). The farther the hyperbolas lie from the origin, the 
larger the absolute value of f . We want to find the extreme values of ( )f x y, , given that  
the point ( )x y,  also lies on the ellipse + =x y4 8.2 2  Which hyperbolas intersecting the 
ellipse lie farthest from the origin? The hyperbolas that just graze the ellipse, the ones that 
are tangent to it, are farthest. At these points, any vector normal to the hyperbola is normal 
to the ellipse, so ∇ = +f y xi j is a multiple λ( )= ±2  of ( )∇ = +g x yi j4 . At the 
point ( )2,1 , for example,

∇ = + ∇ = + ∇ = ∇f g f gi j i j2 , 1
2

, and 2 .

At the point ( )−2,1 ,

∇ = − ∇ = − + ∇ = − ∇f g f gi j i j2 , 1
2

, and 2 . 

FIGURE 14.57 When subjected  
to the constraint ( ) = +g x y x, 82  

− =y 2 1 0,2  the function ( ) =f x y xy,  
takes on extreme values at the four points 
( )± ±2, 1 . These are the points on the 
ellipse where ∇f  (red) is a scalar multiple 
of ∇g (blue) (Example 3).

x

y
xy = −2

∇f = i + 2j
xy = 2

∇g =    i + j1
2

xy = −2xy = 2

0 1

1

FIGURE 14.58 The function ( ) =f x y,
+x y3 4  takes on its largest value on the 

unit circle ( ) = + − =g x y x y, 1 02 2  at  
the point ( )3 5, 4 5  and its smallest value 
at the point ( )− −3 5, 4 5  (Example 4). At 
each of these points, ∇f  is a scalar mul-
tiple of ∇g. The figure shows the gradients 
at the first point but not at the second.

y

x

3x + 4y = 5

3x + 4y = −5

3
5

4
5

,

∇f = 3i + 4j =    ∇g5
2

∇g =    i +    j6
5

8
5

a    b
x2 + y2 = 1

EXAMPLE 4  Find the maximum and minimum values of the function 
( ) = +f x y x y, 3 4  on the circle + =x y 1.2 2

Solution We model this as a Lagrange multiplier problem with

( ) ( )= + = + −f x y x y g x y x y, 3 4 , , 12 2

and look for the values of x, y, and λ that satisfy the equations

λ λ λ

( )

∇ = ∇ + = +

= + − =

f g x y

g x y x y

i j i j: 3 4 2 2

, 0: 1 0.2 2

The gradient equation implies that λ ≠ 0 and gives

λ λ
= =x y3

2
, 2 .

These equations tell us, among other things, that x and y have the same sign. With these 
values for x and y, the equation ( ) =g x y, 0 gives

λ λ( ) ( )+ − =3
2

2 1 0,
2 2

so

λ λ
λ λ λ+ = + = = = ±9

4
4 1, 9 16 4 , 4 25, and 5

2
.

2 2
2 2

Thus,

λ λ
= = ± = = ±x y3

2
3
5

, 2 4
5

,

and ( ) = +f x y x y, 3 4  has critical points at x y, 3 5, 4 5 .( ) ( )= ±
By calculating the value of +x y3 4  at the points 3 5, 4 5 ,( )±  we see that its maxi-

mum and minimum values on the circle + =x y 12 2  are

( ) ( ) ( ) ( )+ = = − + − = − = −3 3
5

4 4
5

25
5

5 and 3 3
5

4 4
5

25
5

5.

The Geometry of the Solution The level curves of ( ) = +f x y x y, 3 4  are the lines 
+ =x y c3 4  (Figure 14.58). The farther the lines lie from the origin, the larger the abso-

lute value of f . We want to find the extreme values of ( )f x y,  given that the point ( )x y,  
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also lies on the circle + =x y 1.2 2  Which lines intersecting the circle lie farthest from 
the origin? The lines tangent to the circle are farthest. At the points of tangency, any vector 
normal to the line is normal to the circle, so the gradient ∇ = +f i j3 4  is a multiple 
λ( )= ±5 2  of the gradient ∇ = +g x yi j2 2 . At the point ( )3 5, 4 5 , for example,

f g f gi j i j3 4 , 6
5

8
5

, and 5
2

.∇ = + ∇ = + ∇ = ∇  

Lagrange Multipliers with Two Constraints

Many problems require us to find the extreme values of a differentiable function ( )f x y z, ,  
whose variables are subject to two constraints. If the constraints are

( ) ( )= =g x y z g x y z, , 0 and , , 01 2

and g1 and g2 are differentiable, with ∇g1 not parallel to ∇g ,2  we find the constrained local 
maxima and minima of f  by introducing two Lagrange multipliers λ and µ (mu, pro-
nounced “mew”). That is, we locate the points ( )P x y z, ,  where f  takes on its constrained 
extreme values by finding the values of λx y z, , , , and µ that simultaneously satisfy the 
three equations

Equations (2) have a nice geometric interpretation. The surfaces =g 01  and =g 02  (usu-
ally) intersect in a smooth curve, say C (Figure 14.59). Along this curve we seek the points 
where f  has local maximum and minimum values relative to its other values on the curve. 
These are the points where ∇f  is normal to C, as we saw in Theorem 12. But ∇g1 and ∇g2 
are also normal to C at these points because C lies in the surfaces =g 01  and =g 0.2  
Therefore, ∇f  lies in the plane determined by ∇g1 and ∇g ,2  which means that 

λ µ∇ = ∇ + ∇f g g1 2 for some λ and µ. Since the points we seek also lie in both surfaces, 
their coordinates must satisfy the equations ( ) =g x y z, , 01  and ( ) =g x y z, , 0,2  which 
are the remaining requirements in Equations (2).

µ is the Greek letter mu,  
pronounced “mew”.

EXAMPLE 5  The plane + + =x y z 1 cuts the cylinder + =x y 12 2  in an ellipse 
(Figure 14.60). Find the points on the ellipse that lie closest to and farthest from the origin.

FIGURE 14.60 On the ellipse where the plane and  
cylinder meet, we find the points closest to and farthest 
from the origin (Example 5).

Cylinder x2 + y2 = 1

z

y

Plane
x + y + z = 1x

P1

(1, 0, 0)

(0, 1, 0)

P2

 λ µ ( ) ( )∇ = ∇ + ∇ = =f g g g x y z g x y z, , , 0, , , 01 2 1 2  (2)

FIGURE 14.59 The vectors ∇g1 and 
∇g2 lie in a plane perpendicular to the 
curve C, because ∇g1 is normal to the  
surface =g 01  and ∇g2 is normal to  
the surface =g 0.2

C

g2 = 0

g1 = 0

∇ f

∇g2

∇g1

Solution We find the extreme values of

( ) = + +f x y z x y z, , 2 2 2
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(the square of the distance from ( )x y z, ,  to the origin) subject to the constraints

( ) = + − =g x y z x y, , 1 01
2 2  (3)

( ) = + + − =g x y z x y z, , 1 0.2  (4)

The gradient equation in Equations (2) then gives

λ µ

λ µ
λ µ λ µ µ

( ) ( )

( ) ( )

∇ = ∇ + ∇

+ + = + + + +
+ + = + + + +

f g g

x y z x y

x y z x y

i j k i j i j k

i j k i j k

2 2 2 2 2

2 2 2 2 2 ,

1 2

or

 λ µ λ µ µ= + = + =x x y y z2 2 , 2 2 , 2 . (5)

The scalar equations in Equations (5) yield

 
λ λ
λ λ

( )

( )

= + ⇒ − =
= + ⇒ − =

x x z x z
y y z y z

2 2 2 1 ,  
2 2 2 1 .

 
(6)

Equations (6) are satisfied simultaneously if either λ = 1 and =z 0 or λ ≠ 1 and 
λ( )= = −x y z 1 .

In the first case, where =z 0, solving Equations (3) and (4) simultaneously to find 
the corresponding points on the ellipse gives the two points ( )1, 0, 0  and ( )0,1, 0 . This 
makes sense when you look at Figure 14.60.

In the second case, where =x y, Equations (3) and (4) give

∓

+ − = + + − =

= = −

= ± =

x x x x z

x z x

x z

1 0 1 0

2 1 1 2

2
2

1 2.

2 2

2

The corresponding points on the ellipse are

= −






 = − − +







P P2

2
, 2

2
,1 2 and 2

2
, 2

2
,1 2 .1 2

To find the points at maximum and minimum distance from the origin, we evaluate f  
at the four critical points ( ) ( ) P1, 0, 0 , 0,1, 0 , 1, and P2. We see that

( ) ( )= = = − = +f f f P f P1, 0, 0 0,1, 0 1, ( ) 4 2 2, and   ( ) 4 2 2.1 2

The largest and smallest of these give the absolute extrema. Since

< − < +1 4 2 2 4 2 2,

we see that the absolute minimum value of f  is 1 and is attained when f  is evaluated at 
either ( )1, 0, 0  or ( )0,1, 0 . The absolute maximum value of f  is +4 2 2 and occurs when 
f  is evaluated at P2. The value = −f P( ) 4 2 21  is neither the largest nor the smallest 
among the values of f  at the critical points, so f  does not have an absolute extremum at P1.

The points on the ellipse closest to the origin are ( )1, 0, 0  and ( )0,1, 0 . The point on 
the ellipse farthest from the origin is P .2  (See Figure 14.60.) 

Two Independent Variables with One Constraint

 1. Extrema on an ellipse Find the points on the ellipse 
+ =x y2 12 2  where ( ) =f x y xy,  has its extreme values.

 2. Extrema on a circle Find the extreme values of ( ) =f x y xy,  
subject to the constraint ( ) = + − =g x y x y, 10 0.2 2

 3. Maximum on a line Find the maximum value of ( ) = −f x y, 49   
−x y2 2 on the line + =x y3 10.

 4. Extrema on a line Find the local extreme values of ( ) =f x y x y, 2  
on the line + =x y 3.

EXERCISES 14.8 
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 5. Constrained minimum Find the points on the curve =xy 542  
nearest the origin.

 6. Constrained minimum Find the points on the curve =x y 22  
nearest the origin.

 7. Use the method of Lagrange multipliers to find

 a. Minimum on a hyperbola The minimum value of +x y, 
subject to the constraints = > >xy x y16, 0, 0.

 b. Maximum on a line The maximum value of xy, subject to 
the constraint + =x y 16.

Comment on the geometry of each solution.

 8. Extrema on a curve Find the points on the curve + +x xy2  
=y 12  in the xy-plane that are nearest to and farthest from the 

origin.

 9. Minimum surface area with fixed volume Find the dimen-
sions of the closed right circular cylindrical can of smallest sur-
face area whose volume is π16 cm .3

 10. Cylinder in a sphere Find the radius and height of the open 
right circular cylinder of largest surface area that can be inscribed 
in a sphere of radius a. What is the largest surface area?

 11. Rectangle of greatest area in an ellipse Use the method of 
Lagrange multipliers to find the dimensions of the rectangle of 
greatest area that can be inscribed in the ellipse + =x y16 9 12 2  
with sides parallel to the coordinate axes.

 12. Rectangle of longest perimeter in an ellipse Find the dimen-
sions of the rectangle of largest perimeter that can be inscribed in 
the ellipse + =x a y b 12 2 2 2  with sides parallel to the coordi-
nate axes. What is the largest perimeter?

 13. Extrema on a circle Find the maximum and minimum values 
of +x y2 2 subject to the constraint − + − =x x y y2 4 0.2 2

 14. Extrema on a circle Find the maximum and minimum values 
of − +x y3 6 subject to the constraint + =x y 4.2 2

 15. Ant on a metal plate The temperature at a point ( )x y,  on a 
metal plate is ( ) = − +T x y x xy y, 4 4 .2 2  An ant on the plate 
walks around the circle of radius 5 centered at the origin. What are 
the highest and lowest temperatures encountered by the ant?

 16. Cheapest storage tank Your firm has been asked to design a 
storage tank for liquid petroleum gas. The customer’s specifications 
call for a cylindrical tank with hemispherical ends, and the tank is 
to hold 8000 m 3 of gas. The customer also wants to use the smallest 
amount of material possible in building the tank. What radius and 
height do you recommend for the cylindrical portion of the tank?

Three Independent Variables with One Constraint

 17. Minimum distance to a point Find the point on the plane 
+ + =x y z2 3 13 closest to the point ( )1,1,1 .

 18. Maximum distance to a point Find the point on the sphere 
+ + =x y z 42 2 2 farthest from the point ( )−1, 1,1 .

 19. Minimum distance to the origin Find the minimum distance 
from the surface − − =x y z 12 2 2  to the origin.

 20. Minimum distance to the origin Find the point on the surface 
= +z xy 1 nearest the origin.

 21. Minimum distance to the origin Find the points on the surface 
= +z xy 42  closest to the origin.

 22. Minimum distance to the origin Find the point(s) on the sur-
face =xyz 1 closest to the origin.

 23. Extrema on a sphere Find the maximum and minimum  
values of

( ) = − +f x y z x y z, , 2 5

on the sphere + + =x y z 30.2 2 2

 24. Extrema on a sphere Find the points on the sphere 
+ + =x y z 252 2 2  where ( ) = + +f x y z x y z, , 2 3  has its 

maximum and minimum values.

 25. Minimizing a sum of squares Find three real numbers whose 
sum is 9 and the sum of whose squares is as small as possible.

 26. Maximizing a product Find the largest product the positive 
numbers x, y, and z can have if + + =x y z 16.2

 27. Rectangular box of largest volume in a sphere Find the 
dimensions of the closed rectangular box with maximum volume 
that can be inscribed in the unit sphere.

 28. Box with vertex on a plane Find the volume of the largest closed 
rectangular box in the first octant having three faces in the coor-
dinate planes and a vertex on the plane + + =x a y b z c 1, 
where > >a b0, 0, and >c 0.

 29. Hottest point on a space probe A space probe in the shape of 
the ellipsoid

+ + =x y z4 4 162 2 2

enters Earth’s atmosphere and its surface begins to heat. After 1 
hour, the temperature at the point ( )x y z, ,  on the probe’s surface is

( ) = + − +T x y z x yz z, , 8 4 16 600.2

Find the hottest point on the probe’s surface.

 30. Extreme temperatures on a sphere Suppose that the Celsius 
temperature at the point ( )x y z, ,  on the sphere + + =x y z 12 2 2  
is =T xyz400 .2  Locate the highest and lowest temperatures on 
the sphere.

 31. Cobb–Douglas production function During the 1920s, Charles 
Cobb and Paul Douglas modeled total production output P (of a 
firm, industry, or entire economy) as a function of labor hours 
involved x and capital invested y (which includes the monetary 
worth of all buildings and equipment). The Cobb–Douglas pro-
duction function is given by

( ) = α α−P x y kx y, ,  1

where k and α are constants representative of a particular firm or 
economy.

 a. Show that a doubling of both labor and capital results in a 
doubling of production P.

 b. Suppose a particular firm has the production function for 
=k 120 and α = 3 4. Assume that each unit of labor costs 

$250 and each unit of capital costs $400, and that the total 
expenses for all costs cannot exceed $100,000. Find the maxi-
mum production level for the firm.

 32. (Continuation of Exercise 31.) If the cost of a unit of labor is c1 
and the cost of a unit of capital is c2, and if the firm can spend only 
B dollars as its total budget, then production P is constrained by 
+ =c x c y B.1 2  Show that the maximum production level sub-

ject to the constraint occurs at the point

α α( )= = −x B
c

y B
c

and 1 .
1 2



878 Chapter 14 Partial Derivatives

 33. Maximizing a utility function: an example from economics  
In economics, the usefulness or utility of amounts x and y of two 
capital goods G1 and G2 is sometimes measured by a function 
( )U x y, . For example, G1 and G2 might be two chemicals a phar-

maceutical company needs to have on hand, and ( )U x y,  might be 
the gain from manufacturing a product whose synthesis requires 
different amounts of the chemicals depending on the process used. 
If G1 costs a dollars per kilogram, G2 costs b dollars per kilo-
gram, and the total amount allocated for the purchase of G1 and 
G2 together is c dollars, then the company’s managers want to 
maximize ( )U x y,  given that + =ax by c. Thus, they need to 
solve a typical Lagrange multiplier problem.

Suppose that

( ) = +U x y xy x, 2

and that the equation + =ax by c simplifies to

+ =x y2 30.

Find the maximum value of U and the corresponding values of x 
and y subject to this latter constraint.

 34. Blood types Human blood types are classified by three gene 
forms A, B, and O. Blood types AA, BB, and OO are homozygous, 
and blood types AB, AO, and BO are heterozygous. If p, q, and r 
represent the proportions of the three gene forms to the popula-
tion, respectively, then the Hardy–Weinberg Law asserts that the 
proportion Q of heterozygous persons in any specific population 
is modeled by

( ) ( )= + +Q p q r pq pr qr, , 2 ,  

subject to + + =p q r 1. Find the maximum value of Q.

 35. Length of a beam In Section 4.6, Exercise 47, we posed a prob-
lem of finding the length L of the shortest beam that can reach 
over a wall of height h to a tall building located k units from the 
wall. Use Lagrange multipliers to show that

( )= +L h k .2 3 2 3 3 2

 36. Locating a radio telescope You are in charge of erecting 
a radio telescope on a newly discovered planet. To minimize 
interference, you want to place it where the magnetic field of 
the planet is weakest. The planet is spherical, with a radius of  
6 units. Based on a coordinate system whose origin is at the cen-
ter of the planet, the strength of the magnetic field is given by 
( ) = − + +M x y z x y xz, , 6 60.2  Where should you locate the 

radio telescope?

Extreme Values Subject to Two Constraints

 37. Maximize the function ( ) = + −f x y z x y z, , 22 2 subject to the 
constraints − =x y2 0 and + =y z 0.

 38. Minimize the function ( ) = + +f x y z x y z, , 2 2 2 subject to the 
constraints + + =x y z2 3 6 and + + =x y z3 9 9.

 39. Minimum distance to the origin Find the point closest to the 
origin on the line of intersection of the planes + =y z2 12 and 
+ =x y 6.

 40. Find the extreme values of ( ) = +f x y z x yz, , 2 2  on the inter-
section of the cylinder + =x z 92 2  and the plane − =y z 4.

 41. Extrema on a curve of intersection Find the extreme values 
of ( ) = +f x y z x yz, , 12  on the intersection of the plane =z 1 
with the sphere + + =x y z 10.2 2 2

 42. a.  Maximum on line of intersection Find the maximum 
value of =w xyz on the line of intersection of the two planes 
+ + =x y z 40 and + − =x y z 0.

 b. Give a geometric argument to support your claim that you 
have found a maximum, and not a minimum, value of w.

 43. Extrema on a circle of intersection Find the extreme values 
of the function ( ) = +f x y z xy z, , 2 on the circle in which the 
plane − =y x 0 intersects the sphere + + =x y z 4.2 2 2

 44. Minimum distance to the origin Find the point closest to the 
origin on the curve of intersection of the plane + =y z2 4 5 and 
the cone = +z x y4 4 .2 2 2

Theory and Examples

 45. The condition f gλ∇ = ∇  is not sufficient Even though 
λ∇ = ∇f g is a necessary condition for the occurrence of an 

extreme value of ( )f x y,  subject to the conditions ( ) =g x y, 0 
and g 0∇ ≠ , it does not in itself guarantee that one exists. As a 
case in point, try using the method of Lagrange multipliers to find 
a maximum value of ( ) = +f x y x y,  subject to the constraint 
that =xy 16. The method will identify the two points ( )4, 4  and 
( )− −4, 4  as candidates for the location of extreme values. Yet the 
sum +x y has no maximum value on the hyperbola =xy 16. 
The farther you go from the origin on this hyperbola in the first 
quadrant, the larger the sum ( ) = +f x y x y,  becomes.

 46. A least squares plane The plane = + +z Ax By C  is to be 
“fitted” to the following points ( )x y z, , :k k k

( ) ( ) ( ) ( )−0, 0, 0 , 0,1,1 , 1,1,1 , 1, 0, 1 .

Find the values of A, B, and C that minimize

∑ ( )+ + −
=

Ax By C z ,
k

k k k
1

4
2

the sum of the squares of the deviations.

 47. a.  Maximum on a sphere Show that the maximum value 
of a b c2 2 2 on a sphere of radius r centered at the origin of a 
Cartesian abc-coordinate system is ( )r 3 .2 3

 b. Geometric and arithmetic means Using part (a), show that 
for nonnegative numbers a, b, and c,

≤ + +abc a b c( )
3

;1 3

that is, the geometric mean of three nonnegative numbers is 
less than or equal to their arithmetic mean.

 48. Sum of products Let …a a a, , , n1 2  be n positive numbers. Find 

the maximum of   ∑ =
a x

i

n
i i1

   subject to the constraint   ∑ =
=

x 1
i

n
i1
2 .

COMPUTER EXPLORATIONS
In Exercises 49–54, use a CAS to perform the following steps implement-
ing the method of Lagrange multipliers for finding constrained extrema:

 a. Form the function λ λ= − −h f g g ,1 1 2 2  where f  is the func-
tion to optimize subject to the constraints =g 01  and =g 0.2

 b. Determine all the first partial derivatives of h, including the 
partials with respect to λ1 and λ ,2  and set them equal to 0.

 c. Solve the system of equations found in part (b) for all the 
unknowns, including λ1 and λ .2

 d. Evaluate f  at each of the solution points found in part (c),  
and select the extreme value subject to the constraints asked 
for in the exercise.
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In this section we use Taylor’s formula to derive the Second Derivative Test for local 
extreme values (Section 14.7) and the error formula for linearizations of functions of two 
independent variables (Section 14.6). The use of Taylor’s formula in these derivations 
leads to an extension of the formula that provides polynomial approximations of all orders 
for functions of two independent variables.

 49. Minimize ( ) = +f x y z xy yz, ,  subject to the constraints 
+ − =x y 2 02 2  and + − =x z 2 0.2 2

 50. Minimize ( ) =f x y z xyz, ,  subject to the constraints 
+ − =x y 1 02 2  and − =x z 0.

 51. Maximize ( ) = + +f x y z x y z, , 2 2 2 subject to the constraints 
+ − =y z2 4 5 0 and + − =x y z4 4 0.2 2 2

 52. Minimize ( ) = + +f x y z x y z, , 2 2 2 subject to the constraints 
− + − − =x xy y z 1 02 2 2  and + − =x y 1 0.2 2

 53. Minimize ( ) = + + +f x y z w x y z w, , , 2 2 2 2 sub-
ject to the constraints − + − − =x y z w2 1 0 and 
x y z w 1 0.+ − + − =

 54. Determine the distance from the line = +y x 1 to the parabola 
=y x.2  (Hint: Let ( )x y,  be a point on the line and (w, z) a point 

on the parabola. You want to minimize ( )( )− + −x w y z .2 2 )

14.9 Taylor’s Formula for Two Variables

Derivation of the Second Derivative Test

Let ( )f x y,  have continuous first and second partial derivatives in an open region R con-
taining a point ( )P a b,  where = =f f 0x y  (Figure 14.61). Let h and k be increments 
small enough to put the point ( )+ +S a h b k,  and the line segment joining it to P inside 
R. We parametrize the segment PS as

= + = + ≤ ≤x a th y b tk t, , 0 1.

If ( )= + +F t f a th b tk( ) , , the Chain Rule gives

′ = + = +F t f dx
dt

f
dy
dt

hf kf( ) .x y x y

Since f x  and f y  are differentiable (because they have continuous partial derivatives), 
′F  is a differentiable function of t and

( ) ( )′′ = ∂ ′
∂

+ ∂ ′
∂

= ∂
∂

+ ⋅ + ∂
∂

+ ⋅

= + +

F F
x
dx
dt

F
y
dy
dt x

hf kf h
y

hf kf k

h f hkf k f2 .

x y x y

xx xy yy
2 2 =f fxy yx

Since F  and ′F  are continuous on 0,1[ ] and ′F  is differentiable on ( )0,1 , we can apply 
Taylor’s formula with =n 2 and =a 0 to obtain

 
F F F F c

F F F c

(1) (0) (0) 1 0 ( ) 1 0
2

(0) (0) 1
2

( )

2
( )

( )= + ′ − + ′′ −

= + ′ + ′′
 (1)

for some c between 0 and 1. Writing Equation (1) in terms of f  gives

  

f a h b k f a b hf a b kf a b

h f hkf k f

, , , ,

1
2

2 .

x y

xx xy yy
a ch b ck

2 2

,
( )

( ) ( ) ( ) ( )+ + = + +

+ + +
( )+ +

 (2)

Since ( ) ( )= =f a b f a b, , 0,x y this reduces to

 ( )( ) ( )+ + − = + +
( )+ +

f a h b k f a b h f hkf k f, , 1
2

2 .xx xy yy
a ch b ck

2 2

,
 (3)

FIGURE 14.61 We begin the derivation 
of the Second Derivative Test at ( )P a b,  by 
parametrizing a typical line segment from 
P to a point S nearby.

Part of open region R

(a + th, b + tk),
a typical point
on the segment

P(a, b)
t = 0

Parametrized
segment
in R

t = 1
S(a + h, b + k)


