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 34. Changing temperature along a circle Is there a direc-
tion u in which the rate of change of the temperature function 
( ) = −T x y z xy yz, , 2  (temperature in degrees Celsius, distance 

in feet) at ( )−P 1, 1,1  is − °3 C ft? Give reasons for your answer.

 35. The derivative of ( )f x y,  at ( )P 1, 20  in the direction of +i j is 
2 2 and in the direction of − j2  is −3. What is the derivative of f  
in the direction of − −i j2 ? Give reasons for your answer.

 36. The derivative of ( )f x y z, ,  at a point P is greatest in the direction 
of = + −v i j k. In this direction, the value of the derivative is 
2 3.

 a. What is ∇f  at P? Give reasons for your answer.

 b. What is the derivative of f  at P in the direction of +i j?

 37. Directional derivatives and scalar components How is the 
derivative of a differentiable function ( )f x y z, ,  at a point P0 in 
the direction of a unit vector u related to the scalar component of 
∇f

P0
 in the direction of u? Give reasons for your answer.

 38. Directional derivatives and partial derivatives Assuming 
that the necessary derivatives of ( )f x y z, ,  are defined, how are 
D f D f, ,i j  and D fk  related to f f, ,x y  and f ?z  Give reasons for 
your answer.

 39. Lines in the xy-plane Show that ( ) ( )− + − =A x x B y y 00 0  
is an equation for the line in the xy-plane through the point 
( )x y,0 0  normal to the vector = +A BN i j.

 40. The algebra rules for gradients Given a constant k and the 
gradients
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establish the algebra rules for gradients.

In Exercises 41–44, find a parametric equation for the line that is per-
pendicular to the graph of the given equation at the given point.

 41. ( )+ = −x y 25, 3, 42 2

 42. ( )+ + = −x xy y 3, 2, 12 2

 43. ( )+ + = −x y z 14, 3, 2,12 2 2

 44. ( )= − −z x xy , 1,1, 03 2

Gradients and Directional Derivatives for Functions of  
More Than Three Variables
In Exercises 45–48, find ∇f  at the given point.

 45. ( ) ( )= − −f x y z w x y
w

x z, , , , 2, 4, 1, 32 3

 46. π( ) ( )= + −f x y z w x y w z, , , sin cos , 2, , 0, 33 2

 47. π( )( ) = +f x y z s t e s x t z e, , , , ln tan , 3, 0,
4

, , 5y 2

 48. ( ) ( )
( )

=
+

− −f x y z s t
x y t

z s
, , , ,

arctan
, 2,1, 1, 2,1

2 2

2

In Exercises 49–52, find the derivative of the function at P0 in the 
direction of v.

 49. ( ) ( )= − − = 〈− − 〉f x y z w
w x
y z

P e v, , ,
ln

, , 2,1, 3 , 1, 2, 2, 4
2 3 0

2

 50. f x y z w x y e P, , , , 4, 2, 3,1 ,z w2
0( ) ( )( )= − + −  

v 1, 0, 2, 2= 〈 − 〉

 51. ( ) ( ) ( )= + − −f x y z s t s x y t x z, , , , arcsin arctan ,2  

P 0, 1
2

, 1,1, 10 ( )− − , = 〈− 〉v 1,1, 0, 3, 5

 52. π π( )( ) = + −f x y z s t tx sy st
z

P, , , , sin cos ,
4

,
6

, 2, 5,10 , 

= 〈− − 〉v 3, 2, 2, 2, 2

FIGURE 14.34 The gradient f∇  is 
orthogonal to the velocity vector of every 
smooth curve in the surface through P .0  
The velocity vectors at P0 therefore lie in a 
common plane, which we call the tangent 
plane at P .0

∇ f
v2

v1
P0

f (x, y, z) = c

In single-variable differential calculus, we saw how the derivative defined the tangent line 
to the graph of a differentiable function at a point on the graph. The tangent line then pro-
vided for a linearization of the function at the point. In this section, we will see analo-
gously how the gradient defines the tangent plane to the level surface of a function 

( )=w f x y z, ,  at a point on the surface. The tangent plane then provides for a lineariza-
tion of f  at the point and defines the total differential of the function.

Tangent Planes and Normal Lines

If = + +t x t y t z tr i j k( ) ( ) ( ) ( )  is a smooth curve on the level surface ( ) =f x y z c, ,  of a 
differentiable function f , we found in Equation (7) of the last section that

( ) ( )= ∇ ⋅ ′d
dt

f t f t tr r r( ) ( ) ( ).

Since f  is constant along the curve r, the derivative on the left-hand side of the equation is 
0, so the gradient ∇f  is orthogonal to the curve’s velocity vector ′r .

Now let us restrict our attention to the curves that pass through a point P0  
(Figure 14.34). All the velocity vectors at P0 are orthogonal to ∇f  at P ,0  so the curves’ 
tangent lines all lie in the plane through P0 normal to ∇f . (assuming it is a nonzero vector). 
We now define this plane.

14.6 Tangent Planes and Differentials
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The results of Section 12.5 imply that the tangent plane and normal line satisfy the 
following equations, as long as the gradient at the point P0 is not the zero vector.

DEFINITIONS The tangent plane to the level surface f x y z c, ,( ) =  of a dif-
ferentiable function f  at a point P0 where the gradient is not zero is the plane 
through P0 normal to f .

P0
∇

The normal line of the surface at P0 is the line through P0 parallel to f .
P0

∇

FIGURE 14.35 The tangent plane and 
normal line to this level surface at P0 
(Example 1).
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Normal line

Tangent plane

The surface
x2 + y2 + z − 9 = 0

P0(1, 2, 4)

1 2

Tangent Plane to f x y z c, ,( ) =  at P x y z, ,0 0 0 0( )

 f P x x f P y y f P z z( ) ( ) ( ) 0x y z0 0 0 0 0 0( ) ( ) ( )− + − + − =  (1)

Normal Line to f x y z c, ,( ) =  at P x y z, ,0 0 0 0( )

 x x f P t y y f P t z z f P t( ) , ( ) , ( )x y z0 0 0 0 0 0= + = + = +  (2)

EXAMPLE 1  Find the tangent plane and normal line of the level surface

( ) = + + − =f x y z x y z, , 9 02 2     A circular paraboloid

at the point ( )P 1, 2, 4 .0

Solution The surface is shown in Figure 14.35.
The tangent plane is the plane through P0 perpendicular to the gradient of f  at P .0  The 

gradient is

( )∇ = + + = + +
( )

f x yi j k i j k2 2 2 4 .
P

1, 2, 4
0

The tangent plane is therefore the plane

( )( ) ( )− + − + − = + + =x y z x y z2 1 4 2 4 0, or 2 4 14.

The line normal to the surface at P0 is

= + = + = +x t y t z t1 2 , 2 4 , 4 . 

To find an equation for the plane tangent to a smooth surface ( )=z f x y,  at a point 
( )P x y z, ,0 0 0 0  where ( )=z f x y, ,0 0 0  we first observe that the equation ( )=z f x y,  is 

equivalent to ( ) − =f x y z, 0. The surface ( )=z f x y,  is therefore the zero level sur-
face of the function ( ) ( )= −F x y z f x y z, , , . The partial derivatives of F  are
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The formula

F P x x F P y y F P z z( ) ( ) ( ) 0x y z0 0 0 0 0 0( ) ( ) ( )− + − + − =

for the plane tangent to the level surface at P0 therefore reduces to

f x y x x f x y y y z z, , 0.x y0 0 0 0 0 0 0( ) ( )( ) ( ) ( )− + − − − =
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EXAMPLE 2  Find the plane tangent to the surface = −z x y yecos x at ( )0, 0, 0 .

Solution We calculate the partial derivatives of ( ) = −f x y x y ye, cos x and use 
Equation (3):

f y ye

f x y e

0, 0 cos 1 0 1 1

0, 0 sin 0 1 1.

x
x

y
x

0, 0

0, 0

( ) ( )

( ) ( )

= − = − ⋅ =

= − − = − = −

( )

( )

The tangent plane is therefore

( )( ) ( )⋅ − − ⋅ − − − =x y z1 0 1 0 0 0,    Eq. (3)

or

− − =x y z 0. 

Plane Tangent to a Surface z f x y,( )=  at x y f x y, , ,0 0 0 0( )( )
The plane tangent to the surface z f x y,( )=  of a differentiable function f  at the 
point P x y z x y f x y, , , , ,0 0 0 0 0 0 0 0( ) ( )( )=  is

 f x y x x f x y y y z z, , 0.x y0 0 0 0 0 0 0( ) ( )( ) ( ) ( )− + − − − =  (3)

FIGURE 14.36 This cylinder and plane 
intersect in an ellipse E (Example 3).
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EXAMPLE 3  The surfaces

( ) = + − =f x y z x y, , 2 02 2     A cylinder

and

( ) = + − =g x y z x z, , 4 0    A plane

meet in an ellipse E (Figure 14.36). Find parametric equations for the line tangent to E at 
the point ( )P 1,1, 3 .0

Solution The tangent line is orthogonal to both ∇f  and ∇g at P ,0  and therefore parallel 
to = ∇ ×∇f gv . The components of v and the coordinates of P0 give us equations for the 
line. We have

( )

( )

( ) ( )

∇ = + = +

∇ = + = +

= + × + = = − −

( )
( )

( )
( )

f x y

g

i j i j

i k i k

v i j i k

i j k

i j k

2 2 2 2

2 2 2 2 0

1 0 1

2 2 2 .

1,1, 3
1,1, 3

1,1, 3
1,1, 3

The tangent line to the ellipse of intersection is

= + = − = −x t y t z t1 2 , 1 2 , 3 2 . 
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Estimating Change in a Specific Direction

The directional derivative plays a role similar to that of an ordinary derivative when we 
want to estimate how much the value of a function f  changes if we move a small distance 
ds from a point P0 to another point nearby. If f  were a function of a single variable, we 
would have

= ′df f P ds( ) .0     Ordinary derivative × increment

For a function of two or more variables, we use the formula

( )= ∇ ⋅df f dsu ,
P0

    Directional derivative × increment

where u is the direction of the motion away from P .0

FIGURE 14.37 As P x y z, ,( ) moves off 
the level surface at P0 by 0.1 unit directly 
toward P1, the function f  changes value by 
approximately 0.067−  unit (Example 4).
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Estimating the Change in f  in a Direction u
To estimate the change in the value of a differentiable function f  when we move 
a small distance ds from a point P0 in a particular direction u, use this formula:

     
df f dsu

Directional
derivative

Distance
increment

P0
( )= ∇ ⋅

EXAMPLE 4  Estimate how much the value of

( ) = +f x y z y x yz, , sin 2

will change if the point ( )P x y z, ,  moves 0.1 unit from ( )P 0,1, 00  straight toward 
( )−P 2, 2, 2 .1

Solution We first find the derivative of f  at P0 in the direction of the vector 
= + −P P i j k2 2 .0 1

 
 The direction of this vector is

= = = + −
P P
P P

P P
u i j k

3
2
3

1
3

2
3

.0 1

0 1

0 1

 
 

 

The gradient of f  at P0 is

( ) ( )∇ = + + + = +( )
( )

f y x x z yi j k i kcos sin 2 2 2 .
0,1, 0

0,1, 0
A B

Therefore,

( )( )∇ ⋅ = + ⋅ + − = − = −f u i k i j k2 2
3

1
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2
3

2
3

4
3

2
3

.
P0

The change df in f  that results from moving =ds 0.1 unit away from P0 in the direction 
of u is approximately

( )( ) ( )= ∇ ⋅ = − ≈ −df f dsu ( ) 2
3

0.1 0.067 unit.
P0

See Figure 14.37. 

How to Linearize a Function of Two Variables

Functions of two variables can be quite complicated, and we sometimes need to approxi-
mate them with simpler ones that give the accuracy required for specific applications with-
out being so difficult to work with. We do this in a way that is similar to the way we find 
linear replacements for functions of a single variable (Section 3.11).
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Suppose the function we wish to approximate is ( )=z f x y,  near a point ( )x y,0 0  at 
which we know the values of f f, ,x  and f y  and at which f  is differentiable. If we move 
from ( )x y,0 0  to a nearby point ( )x y,  by increments ∆ = −x x x 0 and ∆ = −y y y0 
(see Figure 14.38), then the definition of differentiability from Section 14.3 shows that  
the change

f x y f x y f x y x f x y y x y, , , , ,x y0 0 0 0 0 0 1 2ε ε( ) ( ) ( ) ( )− = ∆ + ∆ + ∆ + ∆

where ε ε →, 01 2  as ∆ ∆ →x y, 0. If the increments ∆x and ∆y are small, the products 
x1ε ∆  and y2ε ∆  will eventually be smaller still, and we have the approximation

( ) ( ) ( ) ( )( ) ( )≈ + − + −

( )

f x y f x y f x y x x f x y y y, , , , .

L x y,

x y0 0 0 0 0 0 0 0  

In other words, as long as ∆x and ∆y are small, f  will have approximately the same value 
as the linear function L.

FIGURE 14.38 If f  is differentiable  
at x y, ,0 0( )  then the value of f  at 
point x y,( ) nearby is approximately 
f x y f x y x f x y y, , , .x y0 0 0 0 0 0( ) ( ) ( )+ ∆ + ∆

A point
near (x0, y0)

(x, y)

Δy = y − y0

Δx = x − x0
(x0, y0)

A point where
f is differentiable

DEFINITIONS The linearization of a function f x y,( ) at a point x y,0 0( ) 
where f  is differentiable is the function

L x y f x y f x y x x f x y y y, , , , .x y0 0 0 0 0 0 0 0( ) ( ) ( ) ( )( ) ( )= + − + −

The approximation

f x y L x y, ,( ) ( )≈

is the standard linear approximation of f  at x y, .0 0( )

FIGURE 14.39 The tangent plane 
L x y,( ) represents the linearization of 
f x y,( ) in Example 5.
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From Equation (3), we find that the plane ( )=z L x y,  is tangent to the surface 
( )=z f x y,  at the point ( )x y, .0 0  Thus, the linearization of a function of two variables is 

a tangent-plane approximation in the same way that the linearization of a function of a 
single variable is a tangent-line approximation. (See Exercise 57.)

EXAMPLE 5  Find the linearization of

( ) = − + +f x y x xy y, 1
2

32 2

at the point ( )3, 2 .

Solution We first evaluate f f, ,x  and f y  at the point ( ) ( )=x y, 3, 2 :0 0

( )

( )

( )

( )

( )

( )

( )

( )

= − + + =

= ∂
∂

− + + = − =

= ∂
∂

− + + = − + = −

( )

( ) ( )

( ) ( )

f x xy y

f
x

x xy y x y

f
y

x xy y x y

3, 2 1
2

3 8

3, 2 1
2

3 2 4

3, 2 1
2

3 1,

x

y

2 2

3, 2

2 2

3, 2 3, 2

2 2

3, 2 3, 2

which yields

( ) ( ) ( ) ( )( ) ( )

( )( )( ) ( )

= + − + −

= + − + − − = − −

L x y f x y f x y x x f x y y y

x y x y

, , , ,

8 4 3 1 2 4 2.
x y0 0 0 0 0 0 0 0

The linearization of f  at ( )3, 2  is ( ) = − −L x y x y, 4 2 (see Figure 14.39). 
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When we approximate a differentiable function ( )f x y,  by its linearization ( )L x y,  at 
( )x y, ,0 0  an important question is how accurate the approximation might be.

If we can find a common upper bound M for f f, ,xx yy  and f xy  on a rectangle R 
centered at ( )x y,0 0  (Figure 14.40), then we can bound the error E throughout R by using a 
simple formula. The error is defined by ( ) ( ) ( )= −E x y f x y L x y, , , .

The Error in the Standard Linear Approximation
If f  has continuous first and second partial derivatives throughout an open set 
containing a rectangle R centered at x y,0 0( ), and if M is any upper bound for the 
values of f f, ,xx yy  and f xy  on R, then the error E x y,( ) incurred in replacing 
f x y,( ) on R by its linearization

L x y f x y f x y x x f x y y y, , , ,x y0 0 0 0 0 0 0 0( ) ( ) ( ) ( )( ) ( )= + − + −

satisfies the inequality

E x y M x x y y, 1
2

.0 0
2( ) ( )≤ − + −

To make ( )E x y,  small for a given M, we just make −x x 0  and −y y0  small.

DEFINITION If we move from x y,0 0( ) to a point x dx y dy,0 0( )+ +  nearby, 
the resulting change

df f x y dx f x y dy, ,x y0 0 0 0( ) ( )= +

in the linearization of f  is called the total differential of f .

FIGURE 14.40 The rectangular region 
R x x h y y k: ,0 0− ≤ − ≤  in the 
xy-plane.

y

x
0

k
h

R

(x0, y0)

Differentials

Recall from Section 3.11 that for a function of a single variable, =y f x( ), we defined the 
change in f  as x changes from a to + ∆a x by

( )∆ = + ∆ −f f a x f a( )

and the differential of f  as

= ′ ∆d f f a x( ) .

We now consider the differential of a function of two variables.
Suppose a differentiable function ( )f x y,  and its partial derivatives exist at a point 

( )x y, .0 0  If we move to a nearby point ( )+ ∆ + ∆x x y y, ,0 0  the change in f  is

( ) ( )∆ = + ∆ + ∆ −f f x x y y f x y, , .0 0 0 0

A straightforward calculation based on the definition of ( )L x y, , using the notation 
− = ∆x x x0  and − = ∆y y y,0  shows that the corresponding change in L is

L L x x y y L x y f x y x f x y y, , , , .x y0 0 0 0 0 0 0 0( ) ( ) ( ) ( )∆ = + ∆ + ∆ − = ∆ + ∆

The differentials dx and dy are independent variables, so they can be assigned any values. 
Often we take = ∆ = −dx x x x ,0  and = ∆ = −dy y y y .0  We then have the follow-
ing definition of the differential or total differential of f .
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EXAMPLE 6 Suppose that a cylindrical can is designed to have a radius of 1 in. and
a height of 5 in., but that the radius and height are off by the amounts = +dr 0.03 in. and
= −dh 0.1 in. Estimate the resulting absolute change in the volume of the can.

Solution To estimate the absolute change in π=V r h,2  we use

( ) ( )∆ ≈ = +V dV V r h dr V r h dh, , .r h0 0 0 0

With π=V rh2r  and π=V r ,h
2  we get

π π π π

π π π

( )( )( ) ( ) ( )= + = + −

= − = ≈

dV r h dr r dh2 2 1 5 0.03 1 0.1

0.3 0.1 0.2 0.63 in .
0 0 0

2 2

3  

FIGURE 14.41 The volume of cylinder 
(a) is more sensitive to a small change in r 
than it is to an equally small change in h. 
The volume of cylinder (b) is more sensi-
tive to small changes in h than it is to small 
changes in r (Example 7).

(a) (b)

r = 5

r = 25
h = 25

h = 5

EXAMPLE 7  A company manufactures stainless steel right circular cylindrical 
molasses storage tanks that are 25 ft high with a radius of 5 ft. How sensitive are the tanks’ 
volumes to small variations in height and radius?

Solution With π=V r h,2  the total differential gives the approximation for the change 
in volume as

π π

π π

( ) ( )

( )( )

= +

= +

= +
( ) ( )

dV V dr V dh

rh dr r dh

dr dh

5, 25 5, 25

2

250 25 .

r h

5, 25

2

5, 25

Thus, a 1-unit change in r will change V by about π250 units. A 1-unit change in h will 
change V by about π25 units. The tank’s volume is 10 times more sensitive to a small 
change in r than it is to a small change of equal size in h. As a quality control engineer 
concerned with being sure the tanks have the correct volume, you would want to pay spe-
cial attention to their radii.

In contrast, if the values of r and h are reversed to make =r 25 and =h 5, then the 
total differential in V becomes

π π π π( )( )= + = +
( ) ( )

dV rh dr r dh dr dh2 250 625 .
25, 5

2

25, 5

Now the volume is more sensitive to changes in h than to changes in r (Figure 14.41).
The general rule is that functions are most sensitive to small changes in the variables 

that generate the largest partial derivatives. 

Functions of More Than Two Variables

Analogous results hold for differentiable functions of more than two variables.

1. The linearization of ( )f x y z, ,  at a point ( )P x y z, ,0 0 0 0  is

( ) ( ) ( ) ( )= + − + − + −L x y z f P f P x x f P y y f P z z, , ( ) ( ) ( ) ( ) .x y z0 0 0 0 0 0 0

2. Suppose that R is a closed rectangular solid centered at P0 and lying in an open region 
on which the second partial derivatives of f  are continuous. Suppose also that 

f f f f f, , , , ,xx yy zz xy xz  and f yz  are all less than or equal to M throughout R. Then 
the error ( ) ( ) ( )= −E x y z f x y z L x y z, , , , , ,  in the approximation of f  by L is 
bounded throughout R by the inequality

( )≤ − + − + −E M x x y y z z1
2

.0 0 0
2
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3. If the second partial derivatives of f  are continuous and if x, y, and z change from 
x y, ,0 0  and z0 by small amounts dx, dy, and dz, the total differential

= + +d f f P dx f P dy f P dz( ) ( ) ( )x y z0 0 0

gives a good approximation of the resulting change in f .

EXAMPLE 8  Find the linearization ( )L x y z, ,  of

( ) = − +f x y z x xy z, , 3 sin2

at the point ( ) ( )=x y z, , 2,1, 0 .0 0 0  Find an upper bound for the error incurred in replac-
ing f  by L on the rectangular region

− ≤ − ≤ ≤R x y z: 2 0.01, 1 0.02, 0.01.

Solution Routine calculations give

( ) ( ) ( ) ( )= = = − =f f f f2,1, 0 2, 2,1, 0 3, 2,1, 0 2, 2,1, 0 3.x y z

Thus,

( ) ( )( ) ( ) ( )= + − + − − + − = − + −L x y z x y z x y z, , 2 3 2 2 1 3 0 3 2 3 2.

Since

= = = − = − = =f f f z f f f2, 0, 3 sin , 1, 0, 0,xx yy zz xy xz yz

and − ≤ ≈z3 sin 3 sin 0.01 0.03, we may take =M 2 as a bound on the second  
partials. Hence, the error incurred by replacing f  by L on R satisfies

( )( )≤ + + =E 1
2

2 0.01 0.02 0.01 0.0016.2  

Tangent Planes and Normal Lines to Surfaces
In Exercises 1–10, find equations for the

 (a) tangent plane and

 (b) normal line at the point P0 on the given surface.

 1. ( )+ + =x y z P3, 1,1,12 2 2
0

 2. ( )+ − = −x y z P18, 3, 5, 42 2 2
0

 3. ( )− =z x P2 0, 2, 0, 22
0

 4. ( )+ − + = −x xy y z P2 7, 1, 1, 32 2 2
0

 5. π ( )− + + =x x y e yz Pcos 4, 0,1, 2xz2
0

 6. ( )− − − = −x xy y z P0, 1,1, 12 2
0

 7. ( )+ + =x y z P1, 0,1, 00

 8. ( )+ − − + − = − −x y xy x y z P2 3 4, 2, 3,182 2
0

 9. ( )+ =x y y z x P eln ln , 1,1,0

 10. ye ze z P,  0, 0,1x y
0

2 ( )+ =

In Exercises 11–14, find an equation for the plane that is tangent to the 
given surface at the given point.

 11. ( )( )= +z x yln , 1, 0, 02 2

 12. ( )= ( )− +z e , 0, 0,1x y2 2

 13. ( )= −z y x , 1, 2,1

 14. ( )= +z x y4 , 1,1, 52 2

Tangent Lines to Intersecting Surfaces
In Exercises 15–20, find parametric equations for the line tangent to 
the curve of intersection of the surfaces at the given point.

 15. 

( )

+ + = =x y z xSurfaces: 2 4, 1

Point: 1,1,1

2

 16. 

( )

= + + =xyz x y zSurfaces: 1, 2 3 6

Point: 1,1,1

2 2 2

 17. 

( )

+ + = =x y z ySurfaces: 2 2 4, 1

Point: 1,1,1 2

2

 18. 

( )

+ + = =x y z ySurfaces: 2, 1

Point: 1 2,1,1 2

2

 19. 

( )

+ + + − =

+ + =

x x y y xy z

x y z

Surfaces: 3 4 0,

11

Point: 1,1, 3

3 2 2 3 2

2 2 2

 20. 

( )

+ = + − =x y x y zSurfaces: 4, 0

Point: 2, 2, 4

2 2 2 2

EXERCISES 14.6 
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Estimating Change

 21. By about how much will

( ) = + +f x y z x y z, , ln 2 2 2

change if the point ( )P x y z, ,  moves from ( )P 3, 4,120  a distance 
of =ds 0.1 unit in the direction of + −i j k3 6 2 ?

 22. By about how much will

( ) =f x y z e yz, , cosx

change as the point ( )P x y z, ,  moves from the origin a distance of 
=ds 0.1 unit in the direction of + −i j k2 2 2 ?

 23. By about how much will

( ) = + − +g x y z x x z y z y, , cos sin

change if the point ( )P x y z, ,  moves from ( )−P 2, 1, 00  a distance 
of =ds 0.2 unit toward the point ( )P 0,1, 2 ?1

 24. By about how much will

π( ) = +h x y z xy xz, , cos ( ) 2

change if the point ( )P x y z, ,  moves from ( )− − −P 1, 1, 10  a dis-
tance of =ds 0.1 unit toward the origin?

 25. Temperature change along a circle Suppose that the Celsius 
temperature at the point ( )x y,  in the xy-plane is ( ) =T x y x y, sin 2  
and that distance in the xy-plane is measured in meters. A particle 
is moving clockwise around the circle of radius 1 m centered at 
the origin at the constant rate of 2 m sec.

 a. How fast is the temperature experienced by the particle chang-
ing in degrees Celsius per meter at the point ( )P 1 2, 3 2 ?

 b. How fast is the temperature experienced by the particle 
changing in degrees Celsius per second at P?

 26. Changing temperature along a space curve The Celsius tem-
perature in a region in space is given by ( ) = −T x y z x xyz, , 2 .2  
A particle is moving in this region and its position at time t is 
given by = = = −x t y t z t2 , 3 , ,2 2  where time is measured in 
seconds and distance in meters.

 a. How fast is the temperature experienced by the particle 
changing in degrees Celsius per meter when the particle is at 
the point ( )−P 8, 6, 4 ?

 b. How fast is the temperature experienced by the particle 
changing in degrees Celsius per second at P?

Finding Linearizations
In Exercises 27–32, find the linearization ( )L x y,  of the function at 
each point.

 27. ( ) = + +f x y x y, 12 2  at a. ( )0, 0 , b. ( )1,1

 28. ( ) ( )= + +f x y x y, 2 2 at a. ( )0, 0 , b. ( )1, 2

 29. ( ) = − +f x y x y, 3 4 5 at a. ( )0, 0 , b. ( )1,1

 30. ( ) =f x y x y, 3 4 at a. ( )1,1 , b. ( )0, 0

 31. ( ) =f x y e y, cosx  at a. ( )0, 0 , b. π( )0, 2

 32. ( ) = −f x y e, y x2  at a. ( )0, 0 , b. ( )1, 2

 33. Wind chill factor Wind chill, a measure of the apparent tem-
perature felt on exposed skin, is a function of air temperature and 

wind speed. The precise formula, updated by the National Weather 
Service in 2001 and based on modern heat transfer theory, a human 
face model, and skin tissue resistance, is

W W T T

T

, 35.74 0.6215 35.75

0.4275 ,

0.16

0.16

υ υ

υ

( )= = + −

+ ⋅

where T is air temperature in °F and υ is wind speed in mph. A 
partial wind chill chart follows.

T(°F)

30 25 20 15 10 5 0 5− 10−

υ  
(mph)

 5 25 19 13 7 1 5− 11− 16− 22−

10 21 15   9 3 4− 10− 16− 22− 28−

15 19 13   6 0 7− 13− 19− 26− 32−

20 17 11   4 2− 9− 15− 22− 29− 35−

25 16   9   3 4− 11− 17− 24− 31− 37−

30 15   8   1 5− 12− 19− 26− 33− 39−

35 14   7   0 7− 14− 21− 27− 34− 41−

 a. Use the table to find ( ) ( )−W W20, 25 , 30, 10 , and ( )W 15,15 .

 b. Use the formula to find ( ) ( )− −W W10, 40 , 50, 40 , and 
( )W 60, 30 .

 c. Find the linearization υ( )L T,  of the function υ( )W T,  at the 
point ( )25, 5 .

 d. Use υ( )L T,  in part (c) to estimate the following wind chill 
values.

   i) ( )W 24, 6  ii) ( )W 27, 2

 iii)  ( )−W 5, 10  (Explain why this value is much dierent from 
the value found in the table.)

 34. Find the linearization υ( )L T,  of the function υ( )W T,  in 
Exercise 33 at the point ( )−50, 20 . Use it to estimate the follow-
ing wind chill values.

 a. ( )−W 49, 22

 b. ( )−W 53, 19

 c. ( )−W 60, 30

Bounding the Error in Linear Approximations
In Exercises 35–40, find the linearization ( )L x y,  of the function 
( )f x y,  at P .0  Then find an upper bound for the magnitude E  of the 

error in the approximation ( ) ( )≈f x y L x y, ,  over the rectangle R.

 35. f x y x xy P, 3 5 at 2,1 ,2
0( ) ( )= − +

− ≤ − ≤R x y: 2 0.1, 1 0.1

 36. f x y x xy y x y P, 1 2 1 4 3 3 4 at 2, 2 ,2 2
0( ) ( ) ( ) ( )= + + + − +

− ≤ − ≤R x y: 2 0.1, 2 0.1

 37. f x y y x y P, 1 cos at 0, 0 ,0( ) ( )= + +

≤ ≤R x y: 0.2, 0.2

(Use ≤ycos 1 and ≤ysin 1 in estimating E.)

 38. f x y xy y x P, cos 1 at 1, 2 ,2
0( ) ( )( )= + −

R x y: 1 0.1, 2 0.1− ≤ − ≤
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 39. f x y e y P, cos at 0, 0 ,x
0( ) ( )=

R x y: 0.1, 0.1≤ ≤

(Use e 1.11x ≤  and ycos 1≤  in estimating E.)

 40. f x y x y P, ln ln at 1,1 ,0( ) ( )= +

R x y: 1 0.2, 1 0.2− ≤ − ≤

Linearizations for Three Variables
Find the linearizations L(x, y, z) of the functions in Exercises 41–46 at 
the given points.

 41. f x y z xy yz xz, ,( ) = + +  at

 a. 1,1,1( ) b. 1, 0, 0( ) c. 0, 0, 0( )

 42. f x y z x y z, , 2 2 2( ) = + +  at

 a. 1,1,1( ) b. 0,1, 0( ) c. 1, 0, 0( )

 43. f x y z x y z, , 2 2 2( ) = + +  at

 a. 1, 0, 0( ) b. 1,1, 0( ) c. 1, 2, 2( )

 44. f x y z xy z, , sin( ) ( )=  at

 a. 2,1,1π( ) b. 2, 0,1( )

 45. f x y z e y z, , cosx( ) ( )= + +  at

 a. 0, 0, 0( ) b. 0,
2

, 0π( ) c. 0,
4

,
4

π π( )
 46. f x y z xyz, , tan ( )1( ) = −  at

 a. 1, 0, 0( ) b. 1,1, 0( ) c. 1,1,1( )

In Exercises 47–50, find the linearization L(x, y, z) of the function  
f (x, y, z) at P .0  Then find an upper bound for the magnitude of the error 
E in the approximation f x y z L x y z, , , ,( ) ( )≈  over the region R.

 47. f x y z xz yz P, , 3 2 at 1,1, 2 ,0( ) ( )= − +

R x y z: 1 0.01, 1 0.01, 2 0.02− ≤ − ≤ − ≤

 48. f x y z x xy yz z P, , 1 4 at 1,1, 2 ,2 2
0( ) ( ) ( )= + + +

R x y z: 1 0.01, 1 0.01, 2 0.08− ≤ − ≤ − ≤

 49. f x y z xy yz xz P, , 2 3 at 1,1, 0 ,0( ) ( )= + −

R x y z: 1 0.01, 1 0.01, 0.01− ≤ − ≤ ≤

 50. f x y z x y z P, , 2 cos sin at 0, 0, 4 ,0 π( ) ( )( )= +

R x y z: 0.01, 0.01, 4 0.01π≤ ≤ − ≤

Estimating Error; Sensitivity to Change

 51. Estimating maximum error Suppose that T is to be found 
from the formula T x e e ,y y( )= + −  where x and y are found  
to be 2 and ln 2 with maximum possible errors of dx 0.1=  and 
dy 0.02.=  Estimate the maximum possible error in the com-

puted value of T.

 52. Variation in electrical resistance The resistance R produced 
by wiring resistors of R1 and R2 ohms in parallel (see accompany-
ing figure) can be calculated from the formula

R R R
1 1 1 .

1 2

= +

 a. Show that

dR R
R

dR R
R

dR .
1

2

1
2

2

2=





 +








 b. You have designed a two-resistor circuit, like the one shown, 
to have resistances of R 100 ohms1 =  and R 400 ohms,2 =  
but there is always some variation in manufacturing, and the 
resistors received by your firm will probably not have these 
exact values. Will the value of R be more sensitive to variation 
in R1 or to variation in R ?2  Give reasons for your answer.

+

−
V R1 R2

 c. In another circuit like the one shown, you plan to change R1 
from 20 to 20.1 ohms and R2 from 25 to 24.9 ohms. By about 
what percentage will this change R?

 53. You plan to calculate the area of a long, thin rectangle from mea-
surements of its length and width. Which dimension should you 
measure more carefully? Give reasons for your answer.

 54. a.  Around the point 1, 0( ), is f x y x y, 12( ) ( )= +  more sensi-
tive to changes in x or to changes in y? Give reasons for your 
answer.

 b. What ratio of dx to dy will make df equal zero at 1, 0( )?

 55. Value of a 2 2×  determinant If a  is much greater than 
b c, , and d , to which of a, b, c, and d is the value of the  

determinant

f a b c d
a b

c d
, , ,( ) =

most sensitive? Give reasons for your answer.

 56. The Wilson lot size formula The Wilson lot size formula in 
economics says that the most economical quantity Q of goods  
(radios, shoes, brooms, whatever) for a store to order is given by the 
formula Q KM h2 ,=  where K is the cost of placing the order, 
M is the number of items sold per week, and h is the weekly holding 
cost for each item (cost of space, utilities, security, and so on). To 
which of the variables K, M, and h is Q most sensitive near the point 
K M h, , 2, 20, 0.05 ?0 0 0( ) ( )=  Give reasons for your answer.

Theory and Examples

 57. The linearization of f x y,( ) is a tangent-plane approximation  
Show that the tangent plane at the point P x y f x y, , ,0 0 0 0 0( )( ) on 
the surface z f x y,( )=  defined by a differentiable function f  is 
the plane

f x y x x f x y y y z f x y, , , 0,x y0 0 0 0 0 0 0 0( )( ) ( )( ) ( )( )− + − − − =

or

z f x y f x y x x f x y y y, , , .x y0 0 0 0 0 0 0 0( ) ( ) ( )( ) ( )= + − + −
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Thus, the tangent plane at P0 is the graph of the linearization of f  
at P0 (see accompanying figure).

z

y

x

(x0,  y0)

z = L(x, y)

z = f (x, y)

(x0,  y0, f (x0, y0))

 58. Change along the involute of a circle Find the derivative of 
f x y x y, 2 2( ) = + in the direction of the unit tangent vector of 
the curve

t t t t t t t tr i j( ) cos sin sin cos , 0.( ) ( )= + + − >

 59. Tangent curves A smooth curve is tangent to the surface at a 
point of intersection if its velocity vector is orthogonal to f∇  there.

Show that the curve

t t t tr i j k( ) 2 1( )= + + −

is tangent to the surface x y z 12 2+ − =  when t 1.=

 60. Normal curves A smooth curve is normal to a surface 
f x y z c, ,( ) =  at a point of intersection if the curve’s velocity 
vector is a nonzero scalar multiple of f∇  at the point.

Show that the curve

t t t tr i j k( )   1
4

3( )= + − +

is normal to the surface x y z 32 2+ − =  when t 1.=

 61. Consider a closed rectangular box with a square base, as shown 
in the figure. Assume x is measured with an error of at most 0.5% 
and y is measured with an error of at most 0.75%, so we have 
dx x 0.005<  and dy y 0.0075.<

x

y

x

 a. Use a differential to estimate the relative error dV V  in  
computing the box’s volume V.

 b. Use a differential to estimate the relative error dS S in  
computing the box’s surface area S.

Hint for
x xy
x xy

x xy
x xy

xy
x xy

x xy
x xy

b:
4 4
2 4

4 8
2 4

2 and

4
2 4

2 4
2 4

1.

2

2

2

2

2

2

2

+
+

≤ +
+

=

+
≤ +

+
=

Continuous functions of two variables assume extreme values on closed, bounded domains 
(see Figures 14.42 and 14.43). We see in this section that we can narrow the search for 
these extreme values by examining the functions’ first partial derivatives. A function of two 
variables can assume extreme values only at boundary points of the domain or at interior 
domain points where both first partial derivatives are zero or where one or both of the first 
partial derivatives fail to exist. However, the vanishing of derivatives at an interior point a b,( ) 
does not always signal the presence of an extreme value. The surface that is the graph of the 
function might be shaped like a saddle right above a b,( ) and cross its tangent plane there.

Local Extreme Values for Functions of Two Variables

To find the local extreme values of a function of a single variable, we look for points 
where the graph has a horizontal tangent line. At such points, we then look for local max-
ima, local minima, and points of inflection. For a function f x y,( ) of two variables, we 
look for points where the surface z f x y,( )=  has a horizontal tangent plane. At such 
points, we then look for local maxima, local minima, and saddle points. We begin by 
defining maxima and minima.
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FIGURE 14.42 The function

z x y ecos cos x y2 2( )( )= − +

has a maximum value of 1 and a minimum  
value of about 0.067−  on the square region  
x y3 2, 3 2.π π≤ ≤

y

x

14.7 Extreme Values and Saddle Points

DEFINITIONS Let f x y,( ) be defined on a region R containing the point a b,( ).  
Then

1. f a b,( ) is a local maximum value of f  if f a b f x y, ,( ) ( )≥  for all domain 
points x y,( ) in an open disk centered at a b,( ). f a b,( ) is an absolute maximum 
value of f  on R if f a b f x y, ,( ) ( )≥  for all domain points x y,( ) in R.

2. f a b,( ) is a local minimum value of f if f a b f x y, ,( ) ( )≤  for all domain 
points x y,( ) in an open disk centered at a b,( ). f a b,( ) is an absolute minimum 
value of f  on R if f a b f x y, ,( ) ( )≤  for all domain points x y,( ) in R.


