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takes on all values from 0 to 1 regardless of how small r  is, so that 
( )+

( ) ( )→
x x ylim

x y, 0, 0

2 2 2  does not exist.

In each of these instances, the existence or nonexistence of the 
limit as →r 0 is fairly clear. Shifting to polar coordinates does not 
always help, however, and may even tempt us to false conclusions. 
For example, the limit may exist along every straight line (or ray) 
θ = constant and yet fail to exist in the broader sense. Example 5 illus-
trates this point. In polar coordinates, ( ) ( ) ( )= +f x y x y x y, 2 2 4 2  
becomes

θ θ
θ θ
θ θ

( ) =
+

f r r
r

r
cos , sin

cos sin 2
cos sin2 4 2

for ≠r 0. If we hold θ constant and let →r 0, the limit is 0. On the 
path =y x ,2  however, we have θ θ=r rsin cos2 2  and

θ θ
θ θ

θ θ

θ θ
θ

θ
θ

( )
( )

=
+

= = =

f r r
r

r r

r
r

r
r

cos , sin
cos sin 2

cos cos

2 cos sin
2 cos

sin
cos

1.

2 4 2 2

2

2 4 2 2

In Exercises 65–70, find the limit of f  as ( ) ( )→x y, 0, 0  or show that 
the limit does not exist.

 65. ( ) = −
+

f x y
x xy
x y

,
3 2

2 2
 66. ( ) = −

+






f x y

x y
x y

, cos
3 3

2 2

 67. ( ) =
+

f x y
y

x y
,

2

2 2
 68. ( ) =

+ +
f x y x

x x y
, 2

2 2

 69. ( ) = +
+









−f x y
x y

x y
, tan 1

2 2

 70. ( ) = −
+

f x y
x y
x y

,
2 2

2 2

In Exercises 71 and 72, define ( )f 0, 0  in a way that extends f  to be 
continuous at the origin.

 71. ( ) = − +
+







f x y

x x y y
x y

, ln
3 32 2 2 2

2 2

 72. ( ) =
+

f x y
x y

x y
,

3 2

2 2

Using the Limit Definition
Each of Exercises 73–78 gives a function ( )f x y,  and a positive num-
ber ε. In each exercise, show that there exists a δ > 0 such that for all 
( )x y, ,

δ ε( ) ( )+ < ⇒ − <x y f x y f, 0, 0 .2 2

 73. ε( ) = + =f x y x y, , 0.012 2

 74. ε( ) ( )= + =f x y y x, 1 , 0.052

 75. ε( ) ( )( )= + + =f x y x y x, 1 , 0.012

 76. ε( ) ( )( )= + + =f x y x y x, 2 cos , 0.02

 77. ε( ) ( )=
+

= =f x y
xy

x y
f, and 0, 0 0, 0.04

2

2 2

 78. ε( ) ( )= +
+

= =f x y
x y
x y

f, and 0, 0 0, 0.02
3 4

2 2

Each of Exercises 79–82 gives a function ( )f x y z, ,  and a positive 
number ε. In each exercise, show that there exists a δ > 0 such that 
for all ( )x y z, , ,

δ ε( ) ( )+ + < ⇒ − <x y z f x y z f, , 0, 0, 0 .2 2 2

 79. ε( ) = + + =f x y z x y z, , , 0.0152 2 2

 80. ε( ) = =f x y z xyz, , , 0.008

 81. f x y z
x y z

x y z
, ,

1
, 0.015

2 2 2
ε( ) = + +

+ + +
=

 82. ε( ) = + + =f x y z x y z, , tan tan tan , 0.032 2 2

 83. Show that ( ) = + −f x y z x y z, ,  is continuous at every point 
( )x y z, , .0 0 0

 84. Show that ( ) = + +f x y z x y z, , 2 2 2 is continuous at the origin.

The calculus of several variables is similar to single-variable calculus applied to several 
variables, one at a time. When we hold all but one of the independent variables of a func-
tion constant and differentiate with respect to that one variable, we get a “partial” deriva-
tive. This section shows how partial derivatives are defined and interpreted geometrically, 
and how to calculate them by applying the familiar rules for differentiating functions of a 
single variable. The idea of differentiability for functions of several variables requires more 
than the existence of the partial derivatives, because a point can be approached from many 
different directions. However, we will see that differentiable functions of several variables 
behave similarly to differentiable single-variable functions. In particular, they are continu-
ous and can be well approximated by linear functions.

Partial Derivatives of a Function of Two Variables

If ( )x y,0 0  is a point in the domain of a function ( )f x y, , the vertical plane =y y0 will cut 
the surface ( )=z f x y,  in the curve ( )=z f x y, 0  (Figure 14.16). This curve is the graph 

14.3 Partial Derivatives
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of the function ( )=z f x y, 0  in the plane =y y .0  The horizontal coordinate in this plane 
is x; the vertical coordinate is z. The y-value is held constant at y0, so y is not a variable.

We define the partial derivative of f  with respect to x at the point ( )x y,0 0  as the ordi-
nary derivative of ( )f x y, 0  with respect to x at the point =x x .0  To distinguish partial 
derivatives from ordinary derivatives, we use the symbol ∂ rather than the d previously 
used. In the definition, h represents a real number, positive or negative.

DEFINITION The partial derivative of ( )f x y,  with respect to x at the point 
( )x y,0 0  is

( ) ( )∂
∂

=
+ −

( ) →

f
x

f x h y f x y
h

lim
, ,

,
x y h, 0

0 0 0 0

0 0

provided the limit exists.

FIGURE 14.16 The intersection of the plane =y y0 
with the surface ( )=z f x y, , viewed from above the first 
quadrant of the xy-plane.
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The partial derivative of ( )f x y,  with respect to x at the point ( )x y,0 0  is the same as 
the ordinary derivative of ( )f x y, 0  at the point x 0:

( )∂
∂

=
( ) =

f
x

d
dx

f x y, .
x y x x,

0
0 0 0

A variety of notations are used to denote the partial derivative at a point ( )x y, ,0 0

including

( ) ( )∂
∂

∂
∂ ( )

f
x

x y f x y z
x

, , , , and .x
x y

0 0 0 0
,0 0

When we do not specify a specific point ( )x y,0 0  at which the partial derivative is being 
evaluated, then the partial derivative becomes a function whose domain is the points where 
the partial derivative exists. Notations for this function include

∂
∂

∂
∂

f
x

f z
x

, , and .x
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The slope of the curve ( )=z f x y, 0  at the point ( )( )P x y f x y, , ,0 0 0 0  in the plane 
=y y0 is the value of the partial derivative of f  with respect to x at ( )x y, .0 0  (In 

Figure 14.16 this slope is negative.) The tangent line to the curve at P is the line in the 
plane =y y0 that passes through P with this slope. The partial derivative ∂ ∂f x at 
( )x y,0 0  gives the rate of change of f  with respect to x when y is held fixed at the value y .0

The definition of the partial derivative of ( )f x y,  with respect to y at a point ( )x y,0 0  
is similar to the definition of the partial derivative of f  with respect to x. We hold x fixed at 
the value x 0 and take the ordinary derivative of ( )f x y,0  with respect to y at y .0

DEFINITION The partial derivative of ( )f x y,  with respect to y at the point 
( )x y,0 0  is

( )
( ) ( )∂

∂
= =

+ −

( ) = →

f
y

d
dy

f x y
f x y h f x y

h
, lim

, ,
,

x y y y h,
0

0

0 0 0 0

0 0 0

provided the limit exists.

FIGURE 14.17 The intersection of the 
plane =x x 0 with the surface ( )=z f x y, , 
viewed from above the first quadrant of  
the xy-plane.
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FIGURE 14.18 Figures 14.16 and 14.17 combined. The tangent 
lines at the point ( )( )x y f x y, , ,0 0 0 0  determine a plane that, in this 
picture at least, appears to be tangent to the surface.
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The slope of the curve ( )=z f x y,0  at the point ( )( )P x y f x y, , ,0 0 0 0  in the vertical 
plane =x x 0 (Figure 14.17) is the partial derivative of f  with respect to y at ( )x y, .0 0  The 
tangent line to the curve at P is the line in the plane =x x 0 that passes through P with this 
slope. The partial derivative gives the rate of change of f  with respect to y at ( )x y,0 0  when 
x is held fixed at the value x .0

The partial derivative with respect to y is denoted the same way as the partial deriva-
tive with respect to x:

( ) ( )∂
∂

∂
∂

f
y

x y f x y
f
y

f, , , , , .y y0 0 0 0

Notice that we now have two tangent lines associated with the surface ( )=z f x y,  at 
the point ( )( )P x y f x y, , ,0 0 0 0  (Figure 14.18). Is the plane they determine tangent to the 
surface at P? We will see that it is for the differentiable functions defined at the end of this 
section, and we will learn how to find the tangent plane in Section 14.6. First we have to 
better understand partial derivatives.
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Calculations

The definitions of ∂ ∂f x and ∂ ∂f y give us two different ways of differentiating f  at a 
point: with respect to x in the usual way while treating y as a constant, and with respect to 
y in the usual way while treating x as a constant. As the following examples show, the val-
ues of these partial derivatives are usually different at a given point ( )x y, .0 0

EXAMPLE 1  Find the values of ∂ ∂f x and ∂ ∂f y at the point ( )−4, 5  if

( ) = + + −f x y x xy y, 3 1.2

Solution To find ∂ ∂f x , we treat y as a constant and differentiate with respect to x:

( )
∂
∂
= ∂
∂

+ + − = + ⋅ ⋅ + − = +f
x x

x xy y x y x y3 1 2 3 1 0 0 2 3 .2

The value of ∂ ∂f x at ( )−4, 5  is ( ) ( )+ − = −2 4 3 5 7.
To find ∂ ∂f y , we treat x as a constant and differentiate with respect to y:

( )
∂
∂
= ∂
∂

+ + − = + ⋅ ⋅ + − = +f
y y

x xy y x x3 1 0 3 1 1 0 3 1.2

The value of ∂ ∂f y at ( )−4, 5  is ( ) + =3 4 1 13. 

EXAMPLE 2  Find ∂ ∂f y as a function if ( ) =f x y y xy, sin .

Solution We treat x as a constant and f  as a product of y and sin xy:

( ) ( )

( )

∂
∂
= ∂
∂

= ∂
∂

+ ∂
∂

= ∂
∂

+ = +

f
y y

y xy y
y

xy xy
y

y

y xy
y

xy xy xy xy xy

sin sin sin ( )

cos ( ) sin cos sin .  

EXAMPLE 3  Find f x  and f y  as functions if

( ) =
+

f x y
y

y x
,

2
cos

.

Solution We treat f  as a quotient. With y held constant, we use the quotient rule to get

( ) ( )

( )

( ) ( )
( ) ( )

( )

( )

= ∂
∂ +






 =

+ ∂
∂

− ∂
∂

+

+

=
+ − −

+
=

+

f
x

y
y x

y x
x

y y
x

y x

y x

y x y x

y x

y x

y x

2
cos

cos 2 2 cos

cos

cos 0 2 sin

cos

2 sin

cos
.

x 2

2 2

With x held constant and again applying the quotient rule, we get

( ) ( )

( )

( )
( ) ( )

( )

( ) ( )

= ∂
∂ +






 =

+ ∂
∂

− ∂
∂

+

+

=
+ −

+
=

+

f
y

y
y x

y x
y

y y
y

y x

y x

y x y

y x

x

y x

2
cos

cos 2 2 cos

cos

cos 2 2 1

cos

2 cos

cos
.

y 2

2 2  

Implicit differentiation works for partial derivatives the way it works for ordinary 
derivatives, as the next example illustrates.
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EXAMPLE 4  Find ∂ ∂z x assuming that the equation

− = +yz z x yln

defines z as a function of the two independent variables x and y and the partial derivative 
exists.

Solution We differentiate both sides of the equation with respect to x, holding y constant 
and treating z as a differentiable function of x:

( )

∂
∂

− ∂
∂

= ∂
∂
+ ∂
∂

∂
∂
− ∂
∂
= +

− ∂
∂
=

∂
∂
=

−

x
yz

x
z x

x
y
x

y z
x z

z
x

y
z

z
x

z
x

z
yz

( ) ln

1 1 0

1 1

1
.

    ∂
∂

= ∂
∂

y
x

yz y z
x

With   constant,  ( ) .

 

FIGURE 14.19 The tangent line to the 
curve of intersection of the plane =x 1 
and the surface = +z x y2 2 at the point 
( )1, 2, 5  (Example 5).
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EXAMPLE 5  The plane =x 1 intersects the paraboloid = +z x y2 2 in a parabola. 
Find the slope of the tangent line to the parabola at ( )1, 2, 5  (Figure 14.19).

Solution The parabola lies in a plane parallel to the yz-plane, and the slope is the value 
of the partial derivative ∂ ∂z y at ( )1, 2 :

( ) ( )
∂
∂

= ∂
∂

+ = = =
( ) ( ) ( )

z
y y

x y y2 2 2 4.
1, 2

2 2

1, 2 1, 2

As a check, we can treat the parabola as the graph of the single-variable function 
( )= + = +z y y1 12 2 2 in the plane =x 1 and ask for the slope at =y 2. The slope, 

calculated now as an ordinary derivative, is

( )= + = =
= = =

dz
dy

d
dy

y y1 2 4.
y y y2

2

2 2

 

Functions of More Than Two Variables

The definitions of the partial derivatives of functions of more than two independent vari-
ables are similar to the definitions for functions of two variables. They are ordinary deriva-
tives with respect to one variable, taken while the other independent variables are held 
constant.

EXAMPLE 6  If x, y, and z are independent variables and

( ) ( )= +f x y z x y z, , sin 3 ,

then

[ ]( ) ( )

( ) ( )

( )

∂
∂
= ∂
∂

+ = ∂
∂

+

= + ∂
∂

+

= +

f
z z

x y z x
z

y z

x y z
z

y z

x y z

sin 3 sin 3

cos 3 3

3 cos 3 .

x held constant

Chain rule

y held constant 
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FIGURE 14.21 The graph of

( ) =
≠

=





f x y
xy

xy
,

0, 0

1, 0

consists of the lines L1 and L2 (lying  
1 unit above the xy-plane) and the four 
open quadrants of the xy-plane. The  
function has partial derivatives at the origin 
but is not continuous there (Example 8).

y
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0
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z =
0,  xy ≠ 0
1,  xy = 0

FIGURE 14.20 Resistors arranged this 
way are said to be connected in parallel 
(Example 7). Each resistor lets a portion 
of the current through. Their equivalent 
resistance R is calculated with the formula

= + +
R R R R
1 1 1 1 .

1 2 3

+ −

R3

R2

R1 EXAMPLE 7 If resistors of R R, ,1 2 and R3 ohms are connected in parallel to make an
R-ohm resistor, the value of R can be found from the equation

= + +
R R R R
1 1 1 1

1 2 3

(Figure 14.20). Find the value of ∂ ∂R R2  when = =R R30, 45,1 2  and =R 903  ohms.

Solution To find ∂ ∂R R ,2  we treat R1 and R3 as constants and, using implicit differen-
tiation, differentiate both sides of the equation with respect to R :2

( )∂
∂

= ∂
∂

+ +








− ∂
∂

= − +

∂
∂

= =







R R R R R R

R
R
R R

R
R

R
R

R
R

1 1 1 1

1 0 1 0

.

2 2 1 2 3

2
2 2

2

2

2

2
2

2

2

When = =R R30, 45,1 2  and =R 90,3

= + + = + + = =
R
1 1

30
1

45
1

90
3 2 1

90
6

90
1

15
,

so =R 15 and

( ) ( )∂
∂

= = =R
R

15
45

1
3

1
9

.
2

2 2

Thus at the given values, a small change in the resistance R2 leads to a change in R about 
one-ninth as large. 

Partial Derivatives and Continuity

A function ( )f x y,  can have partial derivatives with respect to both x and y at a point with-
out the function being continuous there. This is different from functions of a single  
variable, where the existence of a derivative implies continuity. If the partial derivatives of 
( )f x y, exist and are continuous throughout a disk centered at ( )x y, ,0 0  however, then f  is 

continuous at ( )x y, ,0 0  as we see at the end of this section.

EXAMPLE 8  Let

( ) =
≠

=





f x y
xy

xy
,

0, 0

1, 0
(Figure 14.21).

 (a) Find the limit of f  as ( )x y,  approaches ( )0, 0  along the line =y x.

 (b) Find the limit of f  as ( )x y,  approaches ( )0, 0  along the line =y 0.

 (c) Prove that f  is not continuous at the origin.

 (d) Show that both partial derivatives ∂ ∂f x and ∂ ∂f y exist at the origin.

Solution 

 (a) Since ( )f x y,  is zero at every point on the line =y x (except at the origin), we have

( ) = =
( ) ( ) ( ) ( )→ = →

f x ylim , lim 0 0.
x y y x x y, 0, 0 , 0, 0

 (b) Since ( )f x y,  takes the constant value 1 at every point on the line =y 0, we have

( ) = =
( ) ( ) ( ) ( )→ = →

f x ylim , lim 1 1.
x y y x y, 0, 0 0 , 0, 0
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 (c) By the two-path test, f  has no limit as ( )x y,  approaches ( )0, 0 . Consequently, f  is not 
continuous at ( )0, 0 .

 (d) To find ∂ ∂f x at ( )0, 0 , we hold y fixed at =y 0. Then ( ) =f x y, 1 for all x, and the 
graph of f  is the line L1 in Figure 14.21. The slope of this line at any x is ∂ ∂ =f x 0. 
In particular, ∂ ∂ =f x 0 at ( )0, 0 . Similarly, ∂ ∂f y is the slope of line L2 at any y, so 
∂ ∂ =f y 0 at ( )0, 0 . 

HISTORICAL BIOGRAPHY

Pierre-Simon Laplace
(1749–1827)
www.bit.ly/2NdfIV5

EXAMPLE 9  If ( ) = +f x y x y ye, cos ,x  find the second-order derivatives

∂
∂

∂
∂ ∂

∂
∂

∂
∂ ∂

f
x

f
y x

f
y

f
x y

, , , and .
2

2

2 2

2

2

Solution The first step is to calculate both first partial derivatives.

f
x x

x y ye

y ye

cos

cos

x

x

( )∂
∂
= ∂
∂

+

= +

 
f
y y

x y ye

x y e

cos

sin

x

x

( )∂
∂
= ∂
∂

+

= − +

Now we find both partial derivatives of each first partial:

f
y x y

f
x

y e

f
x x

f
x

ye

sin

.

x

x

2

2

2

( )

( )

∂
∂ ∂

= ∂
∂
∂
∂

= − +

∂
∂

= ∂
∂
∂
∂

=

 
f

x y x
f
y

y e

f
y y

f
y

x y

sin

cos .

x
2

2

2

∂
∂ ∂

= ∂
∂
∂
∂





 = − +

∂
∂

= ∂
∂
∂
∂





 = −  

∂
∂ ∂

=

f
x y

f f( )yx y x

2
Differentiate first with respect to y, then with respect to x.

Means the same thing

Second-Order Partial Derivatives

When we differentiate a function ( )f x y,  twice, we produce its second-order derivatives. 
These derivatives are usually denoted by

∂
∂

∂
∂

∂
∂ ∂

∂
∂ ∂

f
x

f
f

y
f

f
x y

f
f

y x
f

 or   ,  or   ,

 or   , and  or   .

xx yy

yx xy

2

2

2

2

2 2

The defining equations are

( )∂
∂

= ∂
∂
∂
∂

∂
∂ ∂

= ∂
∂
∂
∂







f
x x

f
x

f
x y x

f
y

, ,
2

2

2

and so on. Notice the order in which the mixed partial derivatives are taken:

What Example 8 suggests is that we need a stronger requirement for differentiability in 
higher dimensions than the mere existence of the partial derivatives. We define differentiability 
for functions of two variables (which is somewhat more complicated than for single-variable 
functions) at the end of this section and then revisit the connection to continuity.

The Mixed Derivative Theorem

You may have noticed that the “mixed” second-order partial derivatives

∂
∂ ∂

∂
∂ ∂

f
y x

f
x y

and
2 2
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in Example 9 are equal. This is not a coincidence. They must be equal whenever 
f f f f, , , ,x y xy and f yx are continuous, as stated in the following theorem. However, the 
mixed derivatives can be different when the continuity conditions are not satisfied (see 
Exercise 82).

THEOREM 2—The Mixed Derivative Theorem
If ( )f x y,  and its partial derivatives f f f, , ,x y xy  and f yx are defined throughout an 
open region containing a point ( )a b,  and are all continuous at ( )a b, , then

( ) ( )=f a b f a b, , .xy yx

HISTORICAL BIOGRAPHY

Alexis Clairaut
(1713–1765)
www.bit.ly/2Rfl7yc

Theorem 2 is also known as Clairaut’s Theorem, after the French mathematician 
Alexis Clairaut, who discovered it. A proof is given in Appendix A.8. Theorem 2 says that 
to calculate a mixed second-order derivative, we may differentiate in either order, provided 
the continuity conditions are satisfied. This ability to proceed in different order sometimes 
simplifies our calculations.

EXAMPLE 10  Find   ∂
∂ ∂

w
x y

2
  if

= +
+

w xy e
y 1

.
y

2

Solution The symbol ∂ ∂ ∂w x y2  tells us to differentiate first with respect to y and then 
with respect to x. However, if we interchange the order of differentiation and differentiate 
first with respect to x, we get the answer more quickly. In two steps,

w
x

y w
y x

and 1.
2∂

∂
= ∂

∂ ∂
=

If we differentiate first with respect to y, we obtain ∂ ∂ ∂ =w x y 12  as well, but with more 
work. We can differentiate in either order because the conditions of Theorem 2 hold for w 
at all points (x y,0 0). 

Partial Derivatives of Still Higher Order

Although we will deal mostly with first- and second-order partial derivatives, because 
these appear the most frequently in applications, there is no theoretical limit to how many 
times we can differentiate a function as long as the derivatives involved exist. Thus, we get 
third- and fourth-order derivatives denoted by symbols like

f
x y

f

f
x y

f

,

,

yyx

yyxx

3

2

4

2 2

∂
∂ ∂

=

∂
∂ ∂

=

and so on. As with second-order derivatives, the order of differentiation is immaterial as 
long as all the derivatives through the order in question are continuous.

EXAMPLE 11  Find f yxyz  if ( ) = − +f x y z xy z x y, , 1 2 .2 2

Solution We first differentiate with respect to the variable y, then x, then y again, and 
finally with respect to z:

= − +

= − +

= −

= −

f xyz x

f yz x

f z

f

4

4 2

4

4.

y

yx

yxy

yxyz

2
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DEFINITION A function ( )=z f x y,  is differentiable at ( )x y,0 0  if both 
( )f x y,x 0 0  and ( )f x y,y 0 0  exist and if ( ) ( )∆ = −z f x y f x y, ,0 0  satisfies

z f x y x f x y y x y, , ,x y0 0 0 0 1 2ε ε( ) ( )∆ = ∆ + ∆ + ∆ + ∆

where ∆ = − ∆ = −x x x y y y, ,0 0  and both ε → 01  and ε → 02  as 
( ) ( )→x y x y, ,0 0 . We call the function f  differentiable if it is differentiable 
at every point in its domain, and we then say that its graph is a smooth surface.

Differentiability

The concept of differentiability for functions of several variables is more complicated than 
for single-variable functions, because a point in the domain can be approached from many 
directions and along any path, not just from the left or from the right. The existence of both 
partial derivatives at a point ( )x y,0 0  is not by itself even enough to show continuity at 
( )x y,0 0 , as we saw in Example 8. The differentiability of f  is instead based on the idea 
that a linear function gives a good model of a differentiable function near a point.

In Section 3.11, we saw that a differentiable function f  can be approximated near a 
point x 0 by its linearization,

( )= + ′ −L x f x f x x x( ) ( ) ( ) .0 0 0

This formula allows us to find a linear function L, a function whose graph is a straight line, 
such that L closely approximates f  near x 0. This can be done whenever f  is differentiable, 
even when f  itself is described by a very complicated formula. Approximations are much 
more useful and meaningful when they are accompanied by information on their accuracy. 
In Section 3.11, Equation (1), we saw that a differentiable function f  satisfies

ε( ) ( )− = ′ − + −f x f x f x x x x x( ) ( ) ( ) ,0 0 0 0

where ε → 0 as →x x 0. Framed in terms of approximating f  by L, this becomes

 ε( )− = −f x L x x x( ) ( ) ,0  (1)

where again ε → 0 as →x x 0.
Rather than being a consequence of the definition, the differentiability for a function of 

two variables ( )f x y,  is defined to mean that f  can be approximated by a linear function. 
The approximating linear function ( )L x y,  for ( )f x y,  near the point ( )x y,0 0  takes the form

( ) ( ) ( ) ( )( ) ( )= + − + −L x y f x y f x y x x f x y y y, , , , ,x y0 0 0 0 0 0 0 0

and the graph of L is a plane, called the tangent plane, that approximates the graph of f  
near ( )x y,0 0 . Notice that ( ) ( )=L x y f x y, ,0 0 0 0 , so the functions L and f  coincide at 
( )x y,0 0 . Moreover the partial derivatives of L and f  are also equal at ( )x y,0 0 . We will 
study tangent planes in detail in Section 14.6.

We now specify how closely f  is approximated by L at ( )x y,0 0 . Extending the for-
mula for single variable functions in Equation (1), we require that the difference between f  
and L satisfies

 ε ε( ) ( ) ( ) ( )− = − + −f x y L x y x x y y, , ,1 0 2 0 (2)

where both ε → 01  and ε → 02  as ( ) ( )→x y x y, ,0 0 .
If we insert the formula for ( )L x y,  into Equation (2) we see that

ε( ) ( ) ( ) ( )( ) ( ) ( )− = − + − + −f x y f x y f x y x x f x y y y x x, , , ,x y0 0 0 0 0 0 0 0 1 0

ε ( )+ −y y .2 0

Setting ∆ = − ∆ = −x x x y y y,0 0, and ( ) ( )∆ = −z f x y f x y, ,0 0 , we get

z f x y x f x y y x y, , .x y0 0 0 0 1 2ε ε( ) ( )∆ = ∆ + ∆ + ∆ + ∆

Based on these ideas, we now state the formal definition of differentiability, which 
captures the idea that  f  is well approximated by L.

Differentiability is defined in a similar way for functions of more than two variables.
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THEOREM 3—The Increment Theorem for Functions of Two Variables
Suppose that the first partial derivatives of ( )f x y,  are defined throughout an 
open region R containing the point ( )x y,0 0  and that f x  and f y  are continuous at 
( )x y, .0 0  Then the change

( ) ( )∆ = + ∆ + ∆ −z f x x y y f x y, ,0 0 0 0

in the value of f  that results from moving from ( )x y,0 0  to another point 
( )+ ∆ + ∆x x y y,0 0  in R satisfies an equation of the form

z f x y x f x y y x y, , ,x y0 0 0 0 1 2ε ε( ) ( )∆ = ∆ + ∆ + ∆ + ∆

in which each of ε ε →, 01 2  as both ∆ ∆ →x y, 0.

Corollary of Theorem 3
If the partial derivatives f x  and f y  of a function ( )f x y,  are continuous through-
out an open region R, then f  is differentiable at every point of R.

Calculating First-Order Partial Derivatives
In Exercises 1–22, find ∂ ∂f x  and ∂ ∂f y.

 1. ( ) = − −f x y x y, 2 3 42  2. ( ) = − +f x y x xy y, 2 2

 3. ( ) ( )( )= − +f x y x y, 1 22

 4. ( ) = − − + − +f x y xy x y x y, 5 7 3 6 22 2

 5. ( ) ( )= −f x y xy, 1 2 6. ( ) ( )= −f x y x y, 2 3 3

 7. ( ) = +f x y x y, 2 2  8. ( ) ( )( )= +f x y x y, 23 2 3

 9. ( ) ( )= +f x y x y, 1  10. ( ) ( )= +f x y x x y, 2 2

 11. ( ) ( ) ( )= + −f x y x y xy, 1  12. ( ) ( )= −f x y y x, tan 1

 13. ( ) = ( )+ +f x y e, x y 1  14. ( ) ( )= +−f x y e x y, sinx

 15. ( ) ( )= +f x y x y, ln  16. ( ) =f x y e y, lnxy

 17. ( ) ( )= −f x y x y, sin 32  18. ( ) ( )= −f x y x y, cos 32 2

 19. ( ) =f x y x, y 20. ( ) =f x y x, log y

 21. ∫( ) ( )=f x y g t dt g t, ( )  continuous for all 
x

y

 22. ∑( ) ( )= <
=

∞

f x y xy xy, ( ) 1
n

n

0

In Exercises 23–34, find f f, ,x y  and f .z

 23. ( ) = + −f x y z xy z, , 1 22 2 24. ( ) = + +f x y z xy yz xz, ,

 25. ( ) = − +f x y z x y z, , 2 2

EXERCISES 14.3 

The following theorem (proved in Appendix A.8) and its accompanying corollary tell 
us that functions with continuous first partial derivatives at ( )x y,0 0  are differentiable there, 
and they are closely approximated locally by a linear function. We study this approxima-
tion in Section 14.6.

In many cases the partial derivatives are defined and continuous at every point in the 
domain of f . We then have the following Corollary.

THEOREM 4—Differentiable Implies Continuous
If a function ( )f x y,  is differentiable at ( )x y, ,0 0  then f  is continuous at ( )x y, .0 0

If ( )=z f x y,  is differentiable, then the definition of differentiability ensures that 
( ) ( )∆ = + ∆ + ∆ −z f x x y y f x y, ,0 0 0 0  approaches 0 as ∆x and ∆y approach 0. This 

tells us that a function of two variables is continuous at every point where it is differentiable.

As we can see from Corollary 3 and Theorem 4, a function ( )f x y,  must be continu-
ous at a point ( )x y,0 0  if f x  and f y  are continuous throughout an open region containing 
( )x y, .0 0  Remember, however, that it is still possible for a function of two variables to be 
discontinuous at a point where its first partial derivatives exist, as we saw in Example 8. 
Existence alone of the partial derivatives at that point is not enough, but continuity of the 
partial derivatives guarantees differentiability.
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 26. ( ) ( )= + + −f x y z x y z, , 2 2 2 1 2

 27. ( ) =f x y z xyz, , arcsin( )

 28. ( ) ( )= +f x y z x yz, , arcsec

 29. ( ) ( )= + +f x y z x y z, , ln 2 3

 30. ( ) =f x y z yz xy, , ln ( )

 31. ( ) = ( )− + +f x y z e, , x y z2 2 2

 32. ( ) = −f x y z e, , xyz

 33. ( ) ( )= + +f x y z x y z, , tanh 2 3

 34. ( ) ( )= −f x y z xy z, , sinh 2

In Exercises 35–40, find the partial derivative of the function with 
respect to each variable.

 35. α π α( ) ( )= −f t t, cos 2

 36. υ υ( ) = υ( )g u e, u2 2

 37. ρ φ θ ρ φ θ( ) =h , , sin cos

 38. θ θ( ) ( )= − −g r z r z, , 1 cos

 39. Work done by the heart (Section 3.11, Exercise 59)

δ υ δυ( ) = +W P V g PV V
g

, , , ,
2

2

 40. Wilson lot size formula (Section 4.6, Exercise 61)

( ) = + +A c h k m q km
q

cm
hq

, , , ,
2

Calculating Second-Order Partial Derivatives
Find all the second-order partial derivatives of the functions in 
Exercises 41–54.

 41. ( ) = + +f x y x y xy,  42. ( ) =f x y xy, sin

 43. ( ) = + +g x y x y y y x, cos sin2

 44. ( ) = + +h x y xe y, 1y  45. ( ) ( )= +r x y x y, ln

 46. ( ) ( )=s x y y x, arctan 47. =w x xytan ( )2

 48. = −w ye x y 2  49. =w x x ysin ( )2

 50. = −
+

w
x y

x y2
51. ( ) = − +f x y x y x y, 2 3 4 5

 52. ( ) = −g x y x y, cos sin 32  53. ( )= −z x x ysin 2 2

 54. =z xe x y2

Mixed Partial Derivatives
In Exercises 55–60, verify that =w w .xy yx

 55. ( )= +w x yln 2 3  56. = + +w e x y y xln lnx

 57. = + +w xy x y x y2 2 3 3 4

 58. = + +w x y y x xysin sin

 59. =w x
y

2

3
 60. = −

+
w

x y
x y

3

 61. Which order of differentiation enables one to calculate f xy faster: 
x first or y first? Try to answer without writing anything down.

 a. ( ) = +f x y x y e, sin y

 b. ( ) =f x y x, 1

 c. ( ) ( )= +f x y y x y,

 d. ( ) ( )= + + − +f x y y x y y y, 4 ln 12 3 2

 e. ( ) = + + +f x y x xy x e, 5 sin 7 x2

 f. ( ) =f x y x xy, ln

 62. The fifth-order partial derivative ∂ ∂ ∂f x y5 2 3 is zero for each 
of the following functions. To show this as quickly as possible, 
which variable would you differentiate with respect to first: x or y? 
Try to answer without writing anything down.

 a. ( ) = +f x y y x e, 2x2 4

 b. ( ) ( )= + −f x y y y x x, sin2 4

 c. ( ) = + + +f x y x xy x e, 5 sin 7 x2

 d. ( ) =f x y x e, y 22

Using the Partial Derivative Definition
In Exercises 63–66, use the limit definition of partial derivative to 
compute the partial derivatives of the functions at the specified points.

 63. f x y x y x y
f
x

f
y

, 1 3 , and at 1, 22( ) ( )= − + − ∂
∂

∂
∂

 64. f x y x y xy
f
x

f
y

, 4 2 3 , and at 2,12( ) ( )= + − − ∂
∂

∂
∂

−

 65. f x y x y
f
x

f
y

, 2 3 1, and at 2, 3( ) ( )= + − ∂
∂

∂
∂

−

 66. ( )
( ) ( )

( ) ( )

( )

=
+
+

≠

=








f x y

x y
x y

x y

x y
,

sin
, , 0, 0

0, , 0, 0 ,

3 4

2 2

∂
∂

f
x

 and 
∂
∂

f
y

 at ( )0, 0

 67. Three variables Let ( )=w f x y z, ,  be a function of three 
independent variables and write the formal definition of the par-
tial derivative ∂ ∂f z  at ( )x y z, , .0 0 0  Use this definition to find 
∂ ∂f z  at ( )1, 2, 3  for ( ) =f x y z x yz, , .2 2

 68. Three variables Let ( )=w f x y z, ,  be a function of three 
independent variables and write the formal definition of the par-
tial derivative ∂ ∂f y at ( )x y z, , .0 0 0  Use this definition to find 
∂ ∂f y at ( )−1, 0, 3  for ( ) = − +f x y z xy yz, , 2 .2 2

Differentiating Implicitly

 69. Find the value of ∂ ∂z x  at the point ( )1,1,1  if the equation

+ − =xy z x yz2 03

defines z as a function of the two independent variables x and y 
and the partial derivative exists.

 70. Find the value of ∂ ∂x z  at the point ( )− −1, 1, 3  if the equation

+ − + =xz y x xln 4 02

defines x as a function of the two independent variables y and z 
and the partial derivative exists.

Exercises 71 and 72 are about the triangle shown here.

c

B

C
A

a

b

 71. Express A implicitly as a function of a, b, and c and calculate 
∂ ∂A a and ∂ ∂A b.

 72. Express a implicitly as a function of A, b, and B and calculate 
∂ ∂a A and ∂ ∂a B.



830 Chapter 14 Partial Derivatives

 73. Two dependent variables Express υ x  in terms of u and y if 
the equations υ=x uln  and υ=y u ln  define u and υ as func-
tions of the independent variables x and y, and if υ x  exists. (Hint: 
Differentiate both equations with respect to x and solve for υ x  by 
eliminating u .x )

 74. Two dependent variables Find ∂ ∂x u and ∂ ∂y u if the equa-
tions = −u x y2 2 and υ = −x y2  define x and y as functions 
of the independent variables u and υ, and the partial derivatives 
exist. (See the hint in Exercise 73.) Then let = +s x y2 2 and 
find ∂ ∂s u.

Theory and Examples

 75. Let ( ) = + −f x y x y, 2 3 4. Find the slope of the line tangent  
to this surface at the point ( )−2, 1  and lying in a. the plane =x 2 
b. the plane = −y 1.

 76. Let ( ) = +f x y x y, 2 3. Find the slope of the line tangent to 
this surface at the point ( )−1,1  and lying in a. the plane = −x 1  
b. the plane =y 1.

In Exercises 77–80, find a function ( )=z f x y,  whose partial deriva-
tives are as given, or explain why this is impossible.

 77. 
∂
∂
= − ∂

∂
= +f

x
x y x

f
y

x y y3 2 , 2 62 2 3

 78. 
∂
∂
= + + ∂

∂
= −f

x
xe x y e

f
y

x ye e2 3, 2xy xy xy y2 2 32 2 2

 79. 
( ) ( )

∂
∂
=

+
∂
∂
=

+
f
x

y
x y

f
y

x
x y

2
, 2

2 2

 80. ( ) ( ) ( )
∂
∂
= + ∂

∂
=f

x
xy xy xy

f
y

x xycos sin , cos

 81. Let f x y
y y

y y
,

, 0

, 0.

3

2
( ) =

≥

− <






Find f f f f, , ,  and  ,x y xy yx  and state the domain for each partial 
derivative.

 82. Let ( )
( )

( )

=
−
+

≠

=








f x y
xy

x y
x y

x y

x y
,

, if  ,   0,

0, if  ,   0.

2 2

2 2

 a. Show that ( )∂
∂

=f
y

x x, 0  for all x, and ( )∂
∂

= −f
x

y y0,  for 

all y.

 b. Show that ( ) ( )∂
∂ ∂

≠ ∂
∂ ∂

f
y x

f
x y

0, 0 0, 0 .
2 2

The three-dimensional Laplace equation

∂
∂

+ ∂
∂

+ ∂
∂

=f
x

f
y

f
z

0
2

2

2

2

2

2

is satisfied by steady-state temperature distributions ( )=T f x y z, ,  in  
space, by gravitational potentials, and by electrostatic potentials. The 
two-dimensional Laplace equation

∂
∂

+ ∂
∂

=f
x

f
y

0,
2

2

2

2

obtained by dropping the ∂ ∂f z2 2 term from the previous equation, 
describes potentials and steady-state temperature distributions in a 
plane. The plane may be treated as a thin slice of the solid perpendicular 
to the z-axis.

Show that each function in Exercises 83–90 satisfies a Laplace 
equation.

 83. ( ) = + −f x y z x y z, , 22 2 2

 84. ( ) ( )= − +f x y z z x y z, , 2 33 2 2

 85. ( ) = −f x y e x, cos 2y2

 86. ( ) = +f x y x y, ln 2 2

 87. ( ) = + −f x y x y, 3 2 4

 88. ( ) =f x y x
y

, arctan

 89. ( ) ( )= + + −f x y z x y z, , 2 2 2 1 2

 90. ( ) = +f x y z e z, , cos 5x y3 4

The wave equation If we stand on an ocean shore and take a snap-
shot of the waves, the picture shows a regular pattern of peaks and 
valleys in an instant of time. We see periodic vertical motion in space, 
with respect to distance. If we stand in the water, we can feel the rise
and fall of the water as the waves go by. We see periodic vertical 
motion in time. In physics, this beautiful symmetry is expressed by the 
one-dimensional wave equation

∂
∂

= ∂
∂

w
t

c w
x

,
2

2
2

2

2

where w is the wave height, x is the distance variable, t is the time vari-
able, and c is the velocity with which the waves are propagated.

w

0

x

In our example, x is the distance across the ocean’s surface, but 
in other applications, x might be the distance along a vibrating string, 
distance through air (sound waves), or distance through space (light 
waves). The number c varies with the medium and type of wave.

Show that the functions in Exercises 91–97 are all solutions of 
the wave equation.

 91. ( )= +w x ctsin  92. ( )= +w x ctcos 2 2

 93. ( )( )= + + +w x ct x ctsin cos 2 2

 94. ( )= +w x ctln 2 2  95. ( )= −w x cttan 2 2

 96. ( )= + + +w x ct e5 cos 3 3 x ct

 97. =w f u( ), where f  is a differentiable function of u, and 
( )= +u a x ct , where a is a constant

 98. Does a function ( )f x y,  with continuous first partial derivatives 
throughout an open region R have to be continuous on R? Give 
reasons for your answer.

 99. If a function ( )f x y,  has continuous second partial derivatives 
throughout an open region R, must the first-order partial deriva-
tives of f  be continuous on R? Give reasons for your answer.
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 100. The heat equation An important partial differential equation 
that describes the distribution of heat in a region at time t can be 
represented by the one-dimensional heat equation

∂
∂
= ∂
∂

f
t

f
x

.
2

2

Show that α( ) = ⋅ β−u x t x e, sin ( ) t satisfies the heat equation 
for constants α and β . What is the relationship between α and β  
for this function to be a solution?

 101. Let ( )
( ) ( )

( ) ( )
= +

≠

=








f x y

xy
x y

x y

x y
,

, , 0, 0

0, , 0, 0 .

2

2 4

Show that ( )f 0, 0x  and ( )f 0, 0y  exist, but f  is not differentiable 
at ( )0, 0 . (Hint: Use Theorem 4 and show that f  is not continu-
ous at ( )0, 0 .)

 102. Let ( ) =
< <





f x y
x y x

,
0, 2

1, otherwise.

2 2

Show that ( )f 0, 0x  and ( )f 0, 0y  exist, but f  is not differentiable 
at ( )0, 0 .

 103. The Korteweg–de Vries equation 

This nonlinear differential equation, which describes wave 
motion on shallow water surfaces, is given by

+ + =u u uu12 0.t xxx x

Show that ( ) ( )= −u x t x t, sech 2  satisfies the Korteweg–de 
Vries equation.

 104. Show that =
+

T
x y

1
2 2

 satisfies the equation 

+ =T T T .xx yy
3

The Chain Rule for functions of a single variable studied in Section 3.6 says that if 
=w f x( ) is a differentiable function of x, and =x g t( ) is a differentiable function of t, 

then w is a differentiable function of t, and dw dt  can be calculated by the formula

=dw
dt

dw
dx

dx
dt

.

For this composite function =w t f g t( ) ( ( )), we can think of t as the independent variable 
and =x g t( ) as the “intermediate variable” because t determines the value of x that in turn 
gives the value of w from the function f . We display the Chain Rule in a “dependency 
diagram” in the margin. Such diagrams capture which variables depend on which.

For functions of several variables the Chain Rule has more than one form, which 
depends on how many independent and intermediate variables are involved. However, 
once the variables are taken into account, the Chain Rule works in the same way we just 
discussed.

Functions of Two Variables

The Chain Rule formula for a differentiable function ( )=w f x y,  when =x x t( ) and 
=y y t( ) are both differentiable functions of t is given in the following theorem.

14.4 The Chain Rule

To find dw dt, we read down the route 
from w to t, multiplying derivatives  
along the way.

Chain Rule

t

x

w = f (x)

dx
dt

dw
dx

Intermediate
variable

Dependent
variable

Independent
variable

dw
dt

dw
dx

dx
dt=

THEOREM 5—Chain Rule for Functions of One Independent Variable and 
Two Intermediate Variables
If w f x y,( )=  is differentiable and if x x t y y t( ), ( )= =  are differentiable 
functions of t, then the composition w f x t y t( ( ), ( ))=  is a differentiable function 
of t and

dw
dt

f x t y t x t f x t y t y t( ),  ( ) ( ) ( ),  ( ) ( ),x y( ) ( )= ′ + ′

or

dw
dt

f
x

dx
dt

f
y

dy
dt

.= ∂
∂

+ ∂
∂


