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 62. ( ) ( )( )= + + −f x y z x y z, , ln , 1, 2,12 2

 63. ( )( ) = + + −g x y z x y z, , , 1, 1, 22 2 2

 64. ( ) ( )= − +
+ −

−g x y z
x y z
x y z

, ,
2

, 1, 0, 2

In Exercises 65–68, find and sketch the domain of f . Then find an 
equation for the level curve or surface of the function passing through 
the given point.

 65. ∑( ) ( )=







=

∞

f x y x
y

, , 1, 2
n

n

0

 66. ∑( ) ( )
( )

= +

=

∞

g x y z
x y

n z
, ,

!
, ln 4, ln 9, 2

n

n

n
0

 67. ∫ θ
θ

( ) ( )=
−

f x y d,
1

, 0,1
x

y

2

 68. ∫ ∫ θ
θ

( )( ) =
+

+
−

g x y z dt
t

d, ,
1 4

, 0,1, 3
x

y z

2 20

COMPUTER EXPLORATIONS
Use a CAS to perform the following steps for each of the functions in 
Exercises 69–72.

 a. Plot the surface over the given rectangle.

 b. Plot several level curves in the rectangle.

 c. Plot the level curve of f  through the given point.

 69. π π( ) = + ≤ ≤ ≤ ≤f x y x
y

y x x y, sin
2

sin 2 , 0 5 , 0 5 , 

π π( )P 3 , 3

 70. π( ) ( )( )= ≤ ≤+f x y x y e x, sin cos , 0 5 ,x y 82 2  
π π π( )≤ ≤y P0 5 , 4 , 4

 71. π π( ) ( )= + − ≤ ≤f x y x y x, sin 2 cos , 2 2 , 
π π π π( )− ≤ ≤y P2 2 , ,

 72. π( ) ( )= + ≤ ≤( )−f x y e x y x,  sin , 0 2 ,x y 2 20.1  
π π π π( )− ≤ ≤ −y P2 , ,

Use a CAS to plot the implicitly defined level surfaces in  
Exercises 73–76.

 73. ( )+ + =x y z4 ln 12 2 2  74. + =x z 12 2

 75. + − =x y z3 12 2

 76. ( ) ( )− + =x y x zsin
2

cos 22 2

Parametrized Surfaces Just as you describe curves in the plane 
parametrically with a pair of equations = =x f t y g t( ), ( ) defined on 
some parameter interval I, you can sometimes describe surfaces in space 
with a triple of equations υ υ υ( ) ( ) ( )= = =x f u y g u z h u, , , , ,  
defined on some parameter rectangle υ≤ ≤ ≤ ≤a u b c d, . 
Many computer algebra systems permit you to plot such surfaces in  
parametric mode. (Parametrized surfaces are discussed in detail in 
Section 16.5.) Use a CAS to plot the surfaces in Exercises 77–80. 
Also plot several level curves in the xy-plane.

 77. υ υ= = = ≤ ≤x u y u z u ucos , sin , , 0 2, 
υ π≤ ≤0 2

 78. υ υ υ= = = ≤ ≤x u y u z ucos , sin , , 0 2, 
υ π≤ ≤0 2

 79. υ υ( ) ( )= + = + =x u y u z u2 cos cos , 2 cos sin , sin , 
π υ π≤ ≤ ≤ ≤u0 2 , 0 2

 80. υ υ= = =x u y u z u2 cos cos , 2 cos sin , 2 sin , 
π υ π≤ ≤ ≤ ≤u0 2 , 0

DEFINITION Suppose that every open circular disk centered at ( )x y,0 0  con-
tains a point in the domain of f  other than ( )x y,0 0  itself. We say that a function 
( )f x y,  approaches the limit L as ( )x y,  approaches ( )x y,0 0 , and write

( ) =
( ) ( )→

f x y Llim , ,
x y x y, ,0 0

if, for every number ε > 0, there exists a corresponding number δ > 0 such that 
for all ( )x y,  in the domain of f ,

ε δ( ) ( ) ( )− < < − + − <f x y L x x y y, whenever 0 .0
2

0
2

In this section we develop limits and continuity for multivariable functions. The theory is 
similar to that developed for single-variable functions, but since we now have more than 
one independent variable, there is additional complexity that requires some new ideas.

14.2 Limits and Continuity in Higher Dimensions

Limits for Functions of Two Variables

If the values of ( )f x y,  lie arbitrarily close to a fixed real number L for all points ( )x y,  
sufficiently close to a point ( )x y,0 0 , we say that f  approaches the limit L as ( )x y,  
approaches ( )x y,0 0 . This is similar to the informal definition for the limit of a function of 
a single variable. Notice, however, that when ( )x y,0 0  lies in the interior of f ’s domain, 
( )x y,  can approach ( )x y,0 0  from any direction, not just from the left or the right. For the 
limit to exist, the same limiting value must be obtained whatever direction of approach is 
taken. We illustrate this issue in several examples following the definition.
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The definition of limit says that the distance between ( )f x y,  and L becomes arbi-
trarily small whenever the distance from ( )x y,  to ( )x y,0 0  is made sufficiently small (but 
not 0). The definition applies to interior points ( )x y,0 0  as well as boundary points of the 
domain of f , although a boundary point need not lie within the domain. The points ( )x y,  
that approach ( )x y,0 0  are always taken to be in the domain of f . See Figure 14.12.

FIGURE 14.12 In the limit definition, δ is the radius of a disk centered at 
( )x y, .0 0  For all points ( )x y,  within this disk, the function values ( )f x y,  lie inside 
the corresponding interval ε ε( )− +L L, .

z
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As for functions of a single variable, it can be shown that

=
( ) ( )→

x xlim
x y x y, ,

0
0 0

 (1)

=
( ) ( )→

y ylim
x y x y, ,

0
0 0

 (2)

 ( )=
( ) ( )→

k k klim any number  .
x y x y, ,0 0

 (3)

For example, in the first limit statement above, ( ) =f x y x,  and =L x .0  Using the defini-
tion of limit, suppose that ε > 0 is chosen. If we let δ  equal this ε, we see that if

x x y y0 ,0
2

0
2 δ ε( ) ( )< − + − < =

then

ε

ε

ε( )

( )− <

− <

− <

x x

x x

f x y x, .

0
2

0

0

( ) ( ) ( )− ≤ − + −x x x x y y0
2

0
2

0
2

=a a2

( )=x f x y,

That is,

ε δ( ) ( ) ( )− < < − + − <f x y x x x y y, whenever 0 .0 0
2

0
2

So a δ  has been found satisfying the requirement of the definition, and therefore we have 
proved that

( ) = =
( ) ( ) ( ) ( )→ →

f x y x xlim , lim .
x y x y x y x y, , , ,

0
0 0 0 0

Equation (1) is a special case of the more general formula

 =
( ) ( )→ →

g x g xlim ( ) lim ( ),
x y x y x x, ,0 0 0

 (4)

according to which, if ( )f x y,  can be expressed as a function g of a single variable x, then 
( )

( ) ( )→
f x ylim ,

x y x y, ,0 0

depends only on what happens to g as x approaches x 0. Similarly, the 

following formula generalizes Equation (2):

 =
( ) ( )→ →

h y h ylim ( ) lim ( )
x y x y y y, ,0 0 0

 (5)

As with single-variable functions, the limit of the sum of two functions is the sum of their 
limits (when they both exist), with similar results for the limits of the differences, constant 
multiples, products, quotients, powers, and roots. These facts are summarized in Theorem 1.
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Although we will not prove Theorem 1 here, we give an informal discussion of why it 
is true. If ( )x y,  is sufficiently close to ( )x y,0 0 , then ( )f x y,  is close to L and ( )g x y,  is 
close to M (from the informal interpretation of limits). It is then reasonable that 
( ) ( )+f x y g x y, ,  is close to ( ) ( )+ −L M f x y g x y; , ,  is close to ( )−L M k f x y; ,  is 

close to kL; ( ) ( )f x y g x y, ,  is close to LM; and ( ) ( )f x y g x y, ,  is close to L M  if ≠M 0. 
Similarly, powers and roots of f  are close to those of L, and a continuous function h com-
posed with f  has a value close to its value h (L) when applied to L.

When we apply Theorem 1 and Equations (1)–(3) to polynomials and rational func-
tions, we obtain the useful result that the limits of these functions as ( ) ( )→x y x y, ,0 0  
can be calculated by evaluating the functions at ( )x y,0 0 . The only requirement is that the 
rational functions be defined at ( )x y,0 0 .

THEOREM 1—Properties of Limits of Functions of Two Variables
The following rules hold if L, M, and k are real numbers and

( ) ( )= =
( ) ( ) ( ) ( )→ →

f x y L g x y Mlim , and lim , .
x y x y x y x y, , , ,0 0 0 0

1. Sum Rule: ( ) ( )[ ]+ = +
( ) ( )→

f x y g x y L Mlim , ,
x y x y, ,0 0

2. Difference Rule: ( ) ( )[ ]− = −
( ) ( )→

f x y g x y L Mlim , ,
x y x y, ,0 0

3. Constant Multiple Rule: ( ) ( )=
( ) ( )→

k f x y kL klim , any number 
x y x y, ,0 0

4. Product Rule: ( ) ( )[ ]⋅ = ⋅
( ) ( )→

f x y g x y L Mlim , ,
x y x y, ,0 0

5. Quotient Rule:
( )
( )

= ≠
( ) ( )→

f x y
g x y

L
M

Mlim
,
,

, 0
x y x y, ,0 0

6. Power Rule: ( )[ ] =
( ) ( )→

f x y Llim , ,
x y x y

n n

, ,0 0

 n a positive integer

7. Root Rule: f x y L Llim ,   ,
x y x y

n n n

, ,

1

0 0

( ) = =
( ) ( )→

n a positive integer, and if n is even,  
we assume that >L 0.

8. Composition Rule: If h z( ) is continuous at =z L, then

( )( ) =
( ) ( )→

h f x y h Llim , ( )
x y x y, ,0 0

.

EXAMPLE 1  In this example, we combine Equations (1)–(5) with the results in Theorem 1 
to calculate the limits.

 (a) 
( )( )

( ) ( ) ( )( ) ( )

− +
+ −

= − +
+ −

= −
( ) ( )→

x xy
x y xy y

lim
3

5
0 0 1 3

0 1 5 0 1 1
3

x y, 0,1 2 3 2 3

 (b)          ( )

( )

+ = +

= + −

= =

( ) ( ) ( ) ( )→ − → −
x y x ylim lim

3 4

25 5

x y x y, 3, 4

2 2

, 3, 4

2 2

2 2

Rule 7

Rules 1 and 6 and Eq. (1) and (2)

 (c) 

π

−






 = −

= −

= −

π π π

π

( ) ( ) ( ) ( ) ( ) ( )→ → →

→ →

x
x

y
y

x
x

y
y

x
x

y
y

lim
sin

sin
lim

sin
lim

sin

lim
sin

lim
sin

2
1

x y x y x y

x y

, 2, 0 , 2, 0 , 2, 0

2 0

Rule 2

Eq. (4) and (5)

Theorem 6, Section 2.4 
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FIGURE 14.13 The surface graph 
suggests that the limit of the function in 
Example 3 must be 0, if it exists.

x

z

y11

EXAMPLE 2  Find 
−
−( ) ( )→

x xy
x y

lim .
x y, 0, 0

2

Solution Since the denominator −x y approaches 0 as ( ) ( )→x y, 0, 0 , we cannot 
use the Quotient Rule from Theorem 1. If we multiply numerator and denominator by 
+x y, however, we produce an equivalent fraction whose limit we can find:

Multiply by a form  
equal to 1.

Algebra

Cancel the nonzero  
factor ( )−x y .

Rules 4 and 1

Rule 7

Eq. (1) and (2)

( ) ( ) ( )
( )
[ ]

( )
( )( )

( )

( )

( )

( )

( )

−
−

=
− +
− +

=
− +

−

= +

= +







= +





= + =

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

→ →

→

→

→ → →

→ → →

x xy
x y

x xy x y

x y x y

x x y x y

x y

x x y

x x y

x x y

lim lim

lim

lim

lim lim lim

lim lim lim

0 0 0 0

x y x y

x y

x y

x y x y x y

x y x y x y

, 0, 0

2

, 0, 0

2

, 0, 0

, 0, 0

, 0, 0 , 0, 0 , 0, 0

, 0, 0 , 0, 0 , 0, 0

We can cancel the factor ( )−x y  because the path =y x (where we would have 
− =x y 0) is not in the domain of the function

( ) = −
−

f x y
x xy
x y

, .
2

 

EXAMPLE 3  Find 
+( ) ( )→

xy
x y

lim
4

x y, 0, 0

2

2 2
 if it exists.

Solution We first observe that along the line =x 0, the function always has value 0 
when ≠y 0. Likewise, along the line =y 0, the function has value 0 provided ≠x 0. So 
if the limit does exist as ( )x y,  approaches ( )0, 0 , the value of the limit must be 0 (see 
Figure 14.13). To see whether this is true, we apply the definition of limit.

Let ε > 0 be given, but arbitrary. We want to find a δ > 0 such that

ε δ
+

− < < + <xy
x y

x y
4

0 whenever 0
2

2 2
2 2

or

ε δ
+

< < + <
x y

x y
x y

4
whenever 0 .

2

2 2
2 2

Since ≤ +y x y2 2 2, we have that

x y
x y

x x x y
4

4 4 4 .
2

2 2
2 2 2

+
≤ = ≤ +     

+
≤y

x y
1

2

2 2

So if we choose δ ε= 4 and let δ< + <x y0 ,2 2  we get

δ ε ε( )+
− ≤ + < = =xy

x y
x y

4
0 4 4 4

4
.

2

2 2
2 2

It follows from the definition that

+
=

( ) ( )→

xy
x y

lim
4

0.
x y, 0, 0

2

2 2
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EXAMPLE 4  If ( ) =f x y
y
x

, , does ( )
( ) ( )→

f x ylim ,
x y, 0, 0

 exist?

Solution The domain of f  does not include the y-axis, so we do not consider any points 
( )x y,  where =x 0 in the approach toward the origin ( )0, 0 . Along the x-axis, the value of 
the function is ( ) =f x, 0 0 for all ≠x 0. So if the limit does exist as ( ) ( )→x y, 0, 0 , 
the value of the limit must be =L 0. On the other hand, along the line =y x, the value 
of the function is ( ) = =f x x x x, 1 for all ≠x 0. That is, the function f  approaches 
the value 1 along the line =y x. This means that for every disk of radius δ  centered at 
( )0, 0 , the disk will contain points ( )x, 0  on the x-axis where the value of the function is 0, 
and also points ( )x x,  along the line =y x where the value of the function is 1. So no mat-
ter how small we choose δ  as the radius of the disk in Figure 14.12, there will be points 
within the disk for which the function values differ by 1. Therefore, the limit cannot exist 
because we can take ε to be any number less than 1 in the limit definition and deny that 
=L 0 or 1, or any other real number. The limit does not exist because we have different 

limiting values along different paths approaching the point ( )0, 0 . 

DEFINITION Suppose that every open circular disk centered at ( )x y,0 0  contains 
a point in the domain of f  other than ( )x y,0 0  itself. Then a function ( )f x y,  is  
continuous at the point x y,0 0( ) if

1. f  is defined at ( )x y, ,0 0

2. ( )
( ) ( )→

f x ylim ,
x y x y, ,0 0

 exists, and

3. ( ) ( )=
( ) ( )→

f x y f x ylim , , .
x y x y, ,

0 0
0 0

A function is continuous if it is continuous at every point of its domain.

FIGURE 14.14 (a) The graph of

( )
( ) ( )

( ) ( )
= +

≠

=








f x y

xy
x y

x y

x y
,

2
, , 0, 0

0, , 0, 0 .

2 2

The function is continuous at every point 
except the origin. (b) The value of f  along 
each line = ≠y mx x, 0, is constant but 
varies with m (Example 5).

(a)

x

y

0

0.8
1

0

00.8

0.8

1

−0.8

−0.8

−0.8

−0.8

−1

−1

(b)

0.8

−y

x

z

Continuity

As with functions of a single variable, continuity is defined in terms of limits.

As with the definition of limit, the definition of continuity applies at boundary points 
as well as interior points of the domain of f .

A consequence of Theorem 1 is that algebraic combinations of continuous functions 
are continuous at every point at which all the functions involved are defined. This means that 
sums, differences, constant multiples, products, quotients, and powers of continuous func-
tions are continuous where defined. In particular, polynomials and rational functions of two 
variables are continuous at every point at which they are defined.

EXAMPLE 5  Show that

( )
( ) ( )

( ) ( )
= +

≠

=








f x y

xy
x y

x y

x y
,

2
, , 0, 0

0, , 0, 0 .

2 2

is continuous at every point except the origin (Figure 14.14).

Solution The function f  is continuous at every point ( )x y,  except ( )0, 0  because its 
values at points other than ( )0, 0  are given by a rational function of x and y, and therefore 
at those points the limiting value is simply obtained by substituting the values of x and y 
into that rational expression.
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At ( )0, 0 , the value of f  is defined, but f  has no limit as ( ) ( )→x y, 0, 0 . The reason 
is that different paths of approach to the origin can lead to different results, as we now see.

For every value of m, the function f  has a constant value on the “punctured” line 
= ≠y mx x, 0, because

( )
( )

( )
=

+
=

+
=

+
=
+= =

f x y
xy

x y
x mx

x mx
mx

x m x
m
m

,
2 2 2 2

1
.

y mx y mx
2 2 2 2

2

2 2 2 2

Therefore, f  has this number as its limit as ( )x y,  approaches ( )0, 0  along the line:

( ) ( )=











=
+( ) ( ) ( ) ( )→

=
→ =

f x y f x y m
m

lim , lim , 2
1

.
x y

y mx
x y y mx, 0, 0

along
, 0, 0 2

This limit changes with each value of the slope m. There is therefore no single number we 
may call the limit of f  as ( )x y,  approaches the origin. The limit fails to exist, and the func-
tion is not continuous at the origin. 

Two-Path Test for Nonexistence of a Limit
If a function ( )f x y,  has different limits along two different paths in the domain of 
f  as ( )x y,  approaches ( )x y,0 0 , then ( )

( ) ( )→
f x ylim ,

x y x y, ,0 0

 does not exist.

FIGURE 14.15 (a) The graph of 
( ) ( )= +f x y x y x y, 2 .2 4 2  (b) Along 

each path = ≠y kx x, 02 , the value of f  
is constant, but varies with k (Example 6).

(a)

x

(b)

y

k = −1

k = 10
k = 3

k = 1

k = −0.1

−1

1

1
1 y

z

x

−1

Examples 4 and 5 illustrate an important point about limits of functions of two or more 
variables. For a limit to exist at a point, the limit must be the same along every approach 
path. This result is analogous to the single-variable case where both the left- and right-sided 
limits had to have the same value. For functions of two or more variables, if we ever find 
paths with different limits, we know the function has no limit at the point they approach.

EXAMPLE 6  Show that the function

( ) =
+

f x y
x y

x y
,

2 2

4 2

(Figure 14.15) has no limit as ( )x y,  approaches ( )0, 0 .

Solution As ( )x y,  approaches ( )0, 0 , both the numerator and the denominator 
approach 0, which gives the indeterminate form 0 0. We examine the values of f  along 
parabolic curves that end at ( )0, 0 . Along the curve = ≠y kx x, 0,2  the function has 
the constant value

( ) =
+

=
+

=
+

=
+= =

f x y
x y

x y
x kx

x kx
kx

x k x
k
k

,
2 2 ( )

( )
2 2

1
.

y kx y kx

2

4 2

2 2

4 2 2

4

4 2 4 22 2

Therefore,

( ) ( )=











=
+( ) ( ) ( ) ( )→

=
→ =

f x y f x y k
k

lim , lim , 2
1

.
x y

y kx
x y y kx, 0, 0

along
, 0, 0 2

2
2

This limit varies with the path of approach. If ( )x y,  approaches ( )0, 0  along the parabola 
=y x ,2  for instance, =k 1 and the limit is 1. If ( )x y,  approaches ( )0, 0  along the x-axis, 
=k 0 and the limit is 0. By the two-path test, f  has no limit as ( )x y,  approaches ( )0, 0 . 

It can be shown that the function in Example 6 has limit 0 along every straight line 
path =y mx  (Exercise 57). This implies the following observation:

Having the same limit along all straight lines approaching ( )x y,0 0  does not 
imply that a limit exists at ( )x y,0 0 .
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Whenever it is correctly defined, the composition of continuous functions is also con-
tinuous. The only requirement is that each function be continuous where it is applied. The 
proof, omitted here, is similar to that for functions of a single variable (Theorem 9 in 
Section 2.5).

Continuity of Compositions
If f  is continuous at ( )x y,0 0  and g is a single-variable function continuous at 
( )f x y, ,0 0  then the composition =h g f  defined by ( ) ( )( )=h x y g f x y, ,  is 

also continuous at ( )x y, .0 0

Limits with Two Variables
Find the limits in Exercises 1–12.

 1. 
− +
+ +( ) ( )→

x y
x y

lim
3 5

2x y, 0, 0

2 2

2 2
 2. 

( ) ( )→

x
y

lim
x y, 0, 4

 3. + −
( ) ( )→

x ylim 1
x y, 3, 4

2 2  4. +






( ) ( )→ − x y

lim 1 1
x y, 2, 3

2

 5. 
π( ) ( )→

x ylim sec tan
x y, 0, 4

 6. 
+
+ +( ) ( )→

x y
x y

lim cos
1x y, 0, 0

2 3

EXERCISES 14.2

For example, the composite functions

( )
+

+−e
xy

x
x y, cos

1
, ln 1x y

2
2 2

are continuous at every point ( )x y, .

Functions of More Than Two Variables

The definitions of limit and continuity for functions of two variables and the conclusions 
about limits and continuity for sums, products, quotients, powers, and compositions all 
extend to functions of three or more variables. Functions like

( )+ +
−

x y z
y z
x

ln and
sin

1

are continuous throughout their domains, and limits like

( )+
=
− +

=
( )→ −

+ −e
z xy

elim
cos 1 cos 0

1
2

,
P

x z

1, 0, 1 2

1 1

2

where P denotes the point ( )x y z, , , may be found by direct substitution.

Extreme Values of Continuous Functions on Closed, Bounded Sets

The Extreme Value Theorem (Theorem 1, Section 4.1) states that a function of a single 
variable that is continuous at every point of a closed, bounded interval a b,[ ] takes on an 
absolute maximum value and an absolute minimum value at least once in a b,[ ]. The same 
holds true of a function ( )=z f x y,  that is continuous on a closed, bounded set R in the 
plane (like a line segment, a disk, or a filled-in triangle). The function takes on an absolute 
maximum value at some point in R and an absolute minimum value at some point in R. The 
function may take on a maximum or minimum value more than once over R.

Similar results hold for functions of three or more variables. A continuous function 
( )=w f x y z, ,  must take on absolute maximum and minimum values on any closed, 

bounded set (such as a solid ball or cube, spherical shell, or rectangular solid) on which it 
is defined. We will learn how to find these extreme values in Section 14.7.



 14.2  Limits and Continuity in Higher Dimensions 817

 7. 
( ) ( )→

−elim
x y

x y

, 0, ln 2
 8. +

( ) ( )→
x ylim ln 1

x y, 1,1

2 2

 9. 
( ) ( )→

e x
x

lim
sin

x y

y

, 0, 0
 10. 

π( )( )→
xylim cos

x y, 1 27,

3
3

 11. 
+π( ) ( )→

x y
x

lim
sin

1x y, 1, 6 2
 12. 

+
−π( ) ( )→

y
y x

lim
cos 1

sinx y, 2, 0

Limits of Quotients
Find the limits in Exercises 13–24 by rewriting the fractions first.

 13. 
− +
−( ) ( )→

≠

x xy y
x y

lim
2

x y, 1,1

2 2

x y

 14. 
−
−( ) ( )→

≠

x y
x y

lim
x y, 1,1

2 2

x y

 15. 
− − +

−( ) ( )→
≠

xy y x
x

lim
2 2
1x y, 1,1

x 1

 16. 
+

− + −( ) ( )→ −
≠− ≠

y
x y xy x x

lim
4
4 4x y, 2, 4 2 2

x x x4, 2

 17. 
− + −

−( ) ( )→
≠

x y x y
x y

lim
2 2

x y, 0, 0
x y

 18. 
+ −
+ −( ) ( )→

+ ≠

x y
x y

lim
4
2x y, 2, 2

x y 4

 19. − −
− −( ) ( )→

− ≠

x y
x y

lim 2 2
2 4x y, 2, 0

x y2 4

 20. − +
− −( ) ( )→

≠ +

x y
x y

lim 1
1x y, 4, 3

x y 1

 21. 
( )+
+( ) ( )→

x y
x y

lim
sin

x y, 0, 0

2 2

2 2
 22. 

−
( ) ( )→

xy
xy

lim
1 cos ( )

x y, 0, 0

 23. 
+
+( ) ( )→ −

x y
x y

lim
x y, 1, 1

3 3
 24. 

−
−( ) ( )→

x y
x y

lim
x y, 2, 2 4 4

Limits with Three Variables
Find the limits in Exercises 25–30.

 25. + +






( )→ x y z

lim 1 1 1
P 1, 3, 4

 26. 
+
+( )→ − −

xy yz
x z

lim
2

P 1, 1, 1 2 2

 27. ( )+ +
π π( )→

x y zlim sin cos sec
P , , 0

2 2 2

 28. 
π( )→ −

− xyzlim tan
P 1 4, 2, 2

1  29. 
π( )→

−ze xlim cos 2
P

y

, 0, 3

2

 30. + +
( )→ −

x y zlim ln
P 2, 3, 6

2 2 2

Continuity for Two Variables
At what points ( )x y,  in the plane are the functions in Exercises 31–34 
continuous?

 31. a. ( ) ( )= +f x y x y, sin  b. ( ) ( )= +f x y x y, ln 2 2

 32. a. ( ) = +
−

f x y
x y
x y

,  b. ( ) =
+

f x y
y

x
,

12

 33. a. ( ) =g x y
xy

, sin 1 b. ( ) = +
+

g x y
x y

x
,

2 cos

 34. a. ( ) = +
− +

g x y
x y

x x
,

3 2

2 2

2
 b. ( ) =

−
g x y

x y
, 1

2

Continuity for Three Variables
At what points ( )x y z, ,  in space are the functions in Exercises 35–40 
continuous?

 35. a. ( ) = + −f x y z x y z, , 22 2 2

 b. ( ) = + −f x y z x y, , 12 2

 36. a. ( ) =f x y z xyz, , ln  b. ( ) = +f x y z e z, , cosx y

 37. a. ( ) =h x y z xy
z

, , sin 1  b. ( ) =
+ −

h x y z
x z

, , 1
12 2

 38. a. ( ) =
+

h x y z
y z

, , 1  b. ( ) =
+

h x y z
xy z

, , 1

 39. a. ( ) ( )= − − −h x y z z x y, , ln 12 2

 b. ( ) =
− +

h x y z
z x y

, , 1
2 2

 40. a. ( ) = − − −h x y z x y z, , 4 2 2 2

 b. ( ) =
− + + −

h x y z
x y z

, , 1
4 92 2 2

No Limit Exists at the Origin
By considering different paths of approach, show that the functions in 
Exercises 41–48 have no limit as ( ) ( )→x y, 0, 0 .

 41. ( ) = −
+

f x y x
x y

,
2 2

z

y

x

 42. ( ) =
+

f x y x
x y

,
4

4 2

z

yx

 43. ( ) = −
+

f x y
x y
x y

,
4 2

4 2
 44. ( ) =f x y

xy
xy

,

 45. ( ) = −
+

g x y
x y
x y

,  46. ( ) = −
−

g x y
x y
x y

,
2

 47. ( ) = +
h x y

x y
y

,
2

 48. ( ) =
+

h x y
x y

x y
,

2

4 2

Theory and Examples
In Exercises 49–54, show that the limits do not exist.

 49. 
−
−( ) ( )→

xy
y

lim
1

1x y, 1,1

2
 50. 

+
−( ) ( )→ −

xy
x y

lim
1

x y, 1, 1 2 2

 51. 
( )+( ) ( )→

x y

x y
lim

ln

lnx y, 0,1 2 2 52. −
− +( ) ( )→

xe
xe y

lim 1
1x y

y

y, 1, 0

 53. 
+
+( ) ( )→

y x

x y
lim

sin

sinx y, 0, 0
54. 

−
−( ) ( )→

y y x
y x

lim
tan tan

x y, 1,1
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 55. Let f x y

y x

y,  

1,

1, 0

0, otherwise.

4

( ) =

≥

≤









Find each of the following limits, or explain that the limit does 
not exist.

 a. ( )
( ) ( )→

f x ylim ,
x y, 0,1

 b. ( )
( ) ( )→

f x ylim ,
x y, 2, 3

 c. ( )
( ) ( )→

f x ylim ,
x y, 0, 0

 56. Let ( ) =
≥

<






f x y
x x

x x
,

, 0

, 0
.

2

3

Find the following limits.

 a. ( )
( ) ( )→ −

f x ylim ,
x y, 3, 2

 b. ( )
( ) ( )→ −

f x ylim ,
x y, 2,1

 c. ( )
( ) ( )→

f x ylim ,
x y, 0, 0

 57. Show that the function in Example 6 has limit 0 along every 
straight line approaching ( )0, 0 .

 58. If f x y, 3,0 0( ) =  what can you say about

( )
( ) ( )→

f x ylim ,
x y x y, ,0 0

if f  is continuous at ( )x y, ?0 0  If f  is not continuous at ( )x y, ?0 0  
Give reasons for your answers.

The Sandwich Theorem for functions of two variables states that 
if ( ) ( ) ( )≤ ≤g x y f x y h x y, , ,  for all ( ) ( )≠x y x y, ,0 0  in a disk 
centered at ( )x y,0 0  and if g and h have the same finite limit L as 
( ) ( )→x y x y, , ,0 0  then

( ) =
( ) ( )→

f x y Llim , .
x y x y, ,0 0

Use this result to support your answers to the questions in Exer-
cises 59–62.

 59. Does knowing that

− < <
−x y xy
xy

1
3

tan
1

2 2 1

tell you anything about

( ) ( )→

− xy
xy

lim
tan

?
x y, 0, 0

1

Give reasons for your answer.

 60. Does knowing that

− < − <xy
x y

xy xy2
6

4 4 cos 2
2 2

tell you anything about

−
( ) ( )→

xy
xy

lim
4 4 cos

?
x y, 0, 0

Give reasons for your answer.

 61. Does knowing that ( ) ≤xsin 1 1 tell you anything about

( ) ( )→
y

x
lim sin 1 ?

x y, 0, 0

Give reasons for your answer.

 62. Does knowing that ( ) ≤ycos 1 1 tell you anything about

( ) ( )→
x

y
lim cos 1 ?

x y, 0, 0

Give reasons for your answer.

 63. (Continuation of Example 5.)

 a. Reread Example 5. Then substitute θ=m tan  into the  
formula

( ) =
+=

f x y m
m

, 2
1y mx

2

and simplify the result to show how the value of f  varies with 
the line’s angle of inclination.

 b. Use the formula you obtained in part (a) to show that the limit 
of f  as ( ) ( )→x y, 0, 0  along the line =y mx varies from −1 
to 1, depending on the angle of approach.

 64. Continuous extension Define ( )f 0, 0  in a way that extends

( ) = −
+

f x y xy
x y
x y

,
2 2

2 2

to be continuous at the origin.

Changing Variables to Polar Coordinates
If you cannot make any headway with ( )

( ) ( )→
f x ylim ,

x y, 0, 0
 in rect-

angular coordinates, try changing to polar coordinates. Substitute 
θ θ= =x r y rcos , sin , and investigate the limit of the resulting 

expression as →r 0. In other words, try to decide whether there 
exists a number L satisfying the following criterion:

Given ε > 0, there exists a δ > 0 such that for all r and θ,

δ θ ε( )< ⇒ − <r f r L, . (1)

If such an L exists, then

θ θ( ) ( )= =
( ) ( )→ →

f x y f r r Llim , lim cos , sin .
x y r, 0, 0 0

For instance,

θ θ
+

= = =
( ) ( )→ → →

x
x y

r
r

rlim lim cos lim cos 0.
x y r r, 0, 0

3

2 2 0

3 3

2 0

3

To verify the last of these equalities, we need to show that Equation 
(1) is satisfied with θ θ( ) =f r r, cos3  and =L 0. That is, we need 
to show that given any ε > 0, there exists a δ > 0 such that for all 
r and θ,

δ θ ε< ⇒ − <r r cos 0 .3

Since

r r r rcos cos 1 ,3 3θ θ= ≤ ⋅ =

the implication holds for all r and θ if we take δ ε= .
In contrast,

θ θ
+

= =x
x y

r
r
cos cos

2

2 2

2 2

2
2
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takes on all values from 0 to 1 regardless of how small r  is, so that 
( )+

( ) ( )→
x x ylim

x y, 0, 0

2 2 2  does not exist.

In each of these instances, the existence or nonexistence of the 
limit as →r 0 is fairly clear. Shifting to polar coordinates does not 
always help, however, and may even tempt us to false conclusions. 
For example, the limit may exist along every straight line (or ray) 
θ = constant and yet fail to exist in the broader sense. Example 5 illus-
trates this point. In polar coordinates, ( ) ( ) ( )= +f x y x y x y, 2 2 4 2  
becomes

θ θ
θ θ
θ θ

( ) =
+

f r r
r

r
cos , sin

cos sin 2
cos sin2 4 2

for ≠r 0. If we hold θ constant and let →r 0, the limit is 0. On the 
path =y x ,2  however, we have θ θ=r rsin cos2 2  and

θ θ
θ θ

θ θ

θ θ
θ

θ
θ

( )
( )

=
+

= = =

f r r
r

r r

r
r

r
r

cos , sin
cos sin 2

cos cos

2 cos sin
2 cos

sin
cos

1.

2 4 2 2

2

2 4 2 2

In Exercises 65–70, find the limit of f  as ( ) ( )→x y, 0, 0  or show that 
the limit does not exist.

 65. ( ) = −
+

f x y
x xy
x y

,
3 2

2 2
 66. ( ) = −

+






f x y

x y
x y

, cos
3 3

2 2

 67. ( ) =
+

f x y
y

x y
,

2

2 2
 68. ( ) =

+ +
f x y x

x x y
, 2

2 2

 69. ( ) = +
+









−f x y
x y

x y
, tan 1

2 2

 70. ( ) = −
+

f x y
x y
x y

,
2 2

2 2

In Exercises 71 and 72, define ( )f 0, 0  in a way that extends f  to be 
continuous at the origin.

 71. ( ) = − +
+







f x y

x x y y
x y

, ln
3 32 2 2 2

2 2

 72. ( ) =
+

f x y
x y

x y
,

3 2

2 2

Using the Limit Definition
Each of Exercises 73–78 gives a function ( )f x y,  and a positive num-
ber ε. In each exercise, show that there exists a δ > 0 such that for all 
( )x y, ,

δ ε( ) ( )+ < ⇒ − <x y f x y f, 0, 0 .2 2

 73. ε( ) = + =f x y x y, , 0.012 2

 74. ε( ) ( )= + =f x y y x, 1 , 0.052

 75. ε( ) ( )( )= + + =f x y x y x, 1 , 0.012

 76. ε( ) ( )( )= + + =f x y x y x, 2 cos , 0.02

 77. ε( ) ( )=
+

= =f x y
xy

x y
f, and 0, 0 0, 0.04

2

2 2

 78. ε( ) ( )= +
+

= =f x y
x y
x y

f, and 0, 0 0, 0.02
3 4

2 2

Each of Exercises 79–82 gives a function ( )f x y z, ,  and a positive 
number ε. In each exercise, show that there exists a δ > 0 such that 
for all ( )x y z, , ,

δ ε( ) ( )+ + < ⇒ − <x y z f x y z f, , 0, 0, 0 .2 2 2

 79. ε( ) = + + =f x y z x y z, , , 0.0152 2 2

 80. ε( ) = =f x y z xyz, , , 0.008

 81. f x y z
x y z

x y z
, ,

1
, 0.015

2 2 2
ε( ) = + +

+ + +
=

 82. ε( ) = + + =f x y z x y z, , tan tan tan , 0.032 2 2

 83. Show that ( ) = + −f x y z x y z, ,  is continuous at every point 
( )x y z, , .0 0 0

 84. Show that ( ) = + +f x y z x y z, , 2 2 2 is continuous at the origin.

The calculus of several variables is similar to single-variable calculus applied to several 
variables, one at a time. When we hold all but one of the independent variables of a func-
tion constant and differentiate with respect to that one variable, we get a “partial” deriva-
tive. This section shows how partial derivatives are defined and interpreted geometrically, 
and how to calculate them by applying the familiar rules for differentiating functions of a 
single variable. The idea of differentiability for functions of several variables requires more 
than the existence of the partial derivatives, because a point can be approached from many 
different directions. However, we will see that differentiable functions of several variables 
behave similarly to differentiable single-variable functions. In particular, they are continu-
ous and can be well approximated by linear functions.

Partial Derivatives of a Function of Two Variables

If ( )x y,0 0  is a point in the domain of a function ( )f x y, , the vertical plane =y y0 will cut 
the surface ( )=z f x y,  in the curve ( )=z f x y, 0  (Figure 14.16). This curve is the graph 
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