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OVERVIEW The volume of a right circular cylinder is a function π=V r h2  of its radius 
and its height, so it is a function ( )V r h,  of two variables r and h. The speed of sound 
through seawater is primarily a function of salinity S and temperature T. The monthly pay-
ment on a home mortgage is a function of the principal borrowed P, the interest rate i, and 
the term t of the loan. These are examples of functions that depend on more than one inde-
pendent variable. In this chapter we extend the ideas of single-variable differential calculus 
to functions of several variables.

Partial Derivatives

14

DEFINITIONS Suppose D is a set of n-tuples of real numbers …( )x x x, , , .n1 2  
A real-valued function f  on D is a rule that assigns a real number

…( )=w f x x x, , , n1 2

to each element in D. The set D is the function’s domain. The set of w-values 
taken on by f  is the function’s range. The symbol w is the dependent variable 
of f , and f  is said to be a function of the n independent variables x1 to x .n  We 
also call the x j’s the function’s input variables and call w the function’s output 
variable.

14.1 Functions of Several Variables

Real-valued functions of several independent real variables are defined analogously to 
functions of a single variable. Points in the domain are now ordered pairs (or triples, qua-
druples, n-tuples) of real numbers, and values in the range are real numbers.

If f  is a function of two independent variables, we usually call the independent vari-
ables x and y and the dependent variable z, and we picture the domain of f  as a region in 
the xy-plane (Figure 14.1). If f  is a function of three independent variables, we call the 
independent variables x, y, and z and the dependent variable w, and we picture the domain 
as a region in space.

In applications, we tend to use letters that remind us of what the variables stand for. To 
say that the volume of a right circular cylinder is a function of its radius and height, we 
might write ( )=V f r h, . To be more specific, we might replace the notation ( )f r h,  by 
the formula that calculates the value of V from the values of r and h, and write π=V r h.2  
In either case, r and h would be the independent variables and V the dependent variable of 
the function.
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FIGURE 14.1 An arrow diagram for the function ( )=z f x y, .
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As usual, we evaluate functions defined by formulas by substituting the values of the 
independent variables in the formula and calculating the corresponding value of the dependent 

variable. For example, the value of ( ) = + +f x y z x y z, , 2 2 2  at the point ( )3, 0, 4  is

( ) ( ) ( ) ( )= + + = =f 3, 0, 4 3 0 4 25 5.2 2 2

Domains and Ranges

In defining a function of more than one variable, we follow the usual practice of excluding 
inputs that lead to complex numbers or division by zero. If ( ) = −f x y y x, ,2  then y 
cannot be less than x .2  If ( ) =f x y xy, 1 ( ) , then xy cannot be zero. The domain of a func-
tion is assumed to be the largest set for which the defining rule generates real numbers, 
unless the domain is otherwise specified explicitly. The range consists of the set of output 
values for the dependent variable.

EXAMPLE 1

 (a) These are functions of two variables. Note the restrictions that apply to their domains 
in order to obtain a real value for the dependent variable z.

Function Domain Range

= −z y x 2 ≥y x 2 0,[ )∞

=z
xy
1 ≠xy 0 ( ) ( )−∞ ∪ ∞, 0 0,

=z xysin Entire plane 1,1[ ]−

 (b) These are functions of three variables with restrictions on some of their domains.

Function Domain Range

= + +w x y z2 2 2 Entire space 0,[ )∞

=
+ +

w
x y z

1
2 2 2

( ) ( )≠x y z, , 0, 0, 0 ( )∞0,

=w xy zln Half-space >z 0 ( )−∞ ∞,
 

Functions of Two Variables

On the real line, closed intervals  [ ]a b,  include their boundary points while open intervals 
( )a b,  do not. Intervals such as  [ )a b, , which includes only one of its two boundary points, 
are neither open nor closed. Regions in the plane can also be open, closed, or neither.
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DEFINITIONS A point ( )x y,0 0  in a region (set) R in the xy-plane is an interior 
point of R if it is the center of a disk of positive radius that lies entirely in R 
(Figure 14.2). A point ( )x y,0 0  is a boundary point of R if every disk centered at 
( )x y,0 0  contains points that lie outside of R as well as points that lie in R. (The 
boundary point itself need not belong to R.)

The interior points of a region, as a set, make up the interior of the region. 
The region’s boundary points make up its boundary. A region is open if it con-
sists entirely of interior points. A region is closed if it contains all its boundary 
points (Figure 14.3).

FIGURE 14.2 Interior points and bound-
ary points of a plane region R. An interior 
point is necessarily a point of R. A bound-
ary point of R need not belong to R.

R

(a) Interior point

R

(b) Boundary point

(x0, y0)

(x0, y0)

FIGURE 14.3 Interior points and boundary points of the unit disk in the plane.
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{(x, y) 0  x2 + y2 < 1}
Open unit disk.
Every point an
interior point.

{(x, y) 0  x2 + y2 = 1}
Boundary of unit
disk. (The unit
circle.)

{(x, y) 0  x2 + y2 ≤ 1}
Closed unit disk.
Contains all
boundary points.

DEFINITIONS A region in the plane is bounded if it lies inside a disk of finite 
radius. A region is unbounded if it is not bounded.

FIGURE 14.4 The domain of ( )f x y,  in 
Example 2 consists of the shaded region 
and its bounding parabola.
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As with a half-open interval of real numbers [ )a b, , some regions in the plane are nei-
ther open nor closed. If you start with the open disk in Figure 14.3 and add to it some, but 
not all, of its boundary points, the resulting set is neither open nor closed. The boundary 
points that are there keep the set from being open. The absence of the remaining boundary 
points keeps the set from being closed. Two interesting examples are the empty set and the 
entire plane. The empty set has no interior points and no boundary points. This implies that 
the empty set is open (because it does not contain points that are not interior points), and at 
the same time it is closed (because there are no boundary points that it fails to contain). The 
entire xy-plane is also both open and closed: open because every point in the plane is an 
interior point, and closed because it has no boundary points. The empty set and the entire 
plane are the only subsets of the plane that are both open and closed. Other sets may be 
open, or closed, or neither.

Examples of bounded sets in the plane include line segments, triangles, interiors of 
triangles, rectangles, circles, and disks. Examples of unbounded sets in the plane include 
lines, coordinate axes, the graphs of functions defined on infinite intervals, quadrants, half-
planes, and the plane itself.

EXAMPLE 2  Describe the domain of the function ( ) = −f x y y x, .2

Solution Since f  is defined only where − ≥y x 0,2  the domain is the closed, 
unbounded region shown in Figure 14.4. The parabola =y x 2 is the boundary of the 
domain. The points above the parabola make up the domain’s interior. 
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Graphs, Level Curves, and Contours of Functions of Two Variables

There are two standard ways to picture the values of a function ( )f x y, . One is to draw and 
label curves in the domain on which f  has a constant value. The other is to sketch the sur-
face ( )=z f x y,  in space.

DEFINITIONS The set of points in the plane where a function ( )f x y,  has a 
constant value ( ) =f x y c,  is called a level curve of f . The set of all points 

( )( )x y f x y, , ,  in space, for ( )x y,  in the domain of f , is called the graph of f .

The graph of f  is often called the surface z f x y,( )= .

EXAMPLE 3  Graph ( ) = − −f x y x y, 100 2 2 and plot the level curves ( ) =f x y, 0, 
( ) =f x y, 51, and ( ) =f x y, 75 in the domain of f  in the plane.

Solution The domain of f  is the entire xy-plane, and the range of f  is the set of real 
numbers less than or equal to 100. The graph is the paraboloid = − −z x y100 ,2 2  the 
positive portion of which is shown in Figure 14.5.

The level curve ( ) =f x y, 0 is the set of points in the xy-plane at which

( ) = − − = + =f x y x y x y, 100 0, or 100,2 2 2 2

which is the circle of radius 10 centered at the origin. Similarly, the level curves 
( ) =f x y, 51 and ( ) =f x y, 75 (Figure 14.5) are the circles

f x y x y x y

f x y x y x y

, 100 51, or 49

, 100 75, or 25.

2 2 2 2

2 2 2 2

( )

( )

= − − = + =

= − − = + =

The level curve ( ) =f x y, 100 consists of the origin alone. (It is still a level curve.)
If + >x y 100,2 2  then the values of ( )f x y,  are negative. For example, the circle 
+ =x y 144,2 2  which is the circle centered at the origin with radius 12, gives the constant 

value ( ) = −f x y, 44 and is a level curve of f . 

The curve in space in which the plane =z c cuts a surface ( )=z f x y,  is made up 
of the points that represent the function value ( ) =f x y c, . It is called the contour curve 
( ) =f x y c, to distinguish it from the level curve ( ) =f x y c,  in the domain of f . 

Figure 14.6 shows the contour curve ( ) =f x y, 75 on the surface = − −z x y100 2 2 
defined by the function ( ) = − −f x y x y, 100 .2 2  The contour curve lies directly above 
the circle + =x y 25,2 2  which is the level curve ( ) =f x y, 75 in the function’s domain.

The distinction between level curves and contour curves is often overlooked, and it is 
common to call both types of curves by the same name, relying on context to make it clear 
which type of curve is meant. On most maps, for example, the curves that represent con-
stant elevation (height above sea level) are called contours, not level curves (Figure 14.7).

Functions of Three Variables

In the plane, the points where a function of two independent variables has a constant value 
( ) =f x y c,  make a curve in the function’s domain. In space, the points where a function 

of three independent variables has a constant value ( ) =f x y z c, ,  make a surface in the 
function’s domain.

DEFINITION The set of points ( )x y z, ,  in space where a function of three inde-
pendent variables has a constant value ( ) =f x y z c, ,  is called a level surface of f .

FIGURE 14.5 The graph and selected 
level curves of the function ( )f x y,  in 
Example 3. The level curves lie in the 
xy-plane,which is the domain of the 
function ( )f x y, .
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The surface
z = f (x, y)
  = 100 − x2 − y2

is the graph of f.

FIGURE 14.6 A plane =z c paral-
lel to the xy-plane intersecting a surface 

( )=z f x y,  produces a contour curve.
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The contour curve f(x, y) = 100 − x2 − y2 = 75
is the circle x2 + y2 = 25 in the plane z = 75. 

Plane z = 75

The level curve f (x, y) = 100 − x2 − y2 = 75
is the circle x2 + y2 = 25 in the xy-plane.

z = 100 − x2 − y2

100
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Since the graphs of functions of three variables consist of points ( )( )x y z f x y z, , , , ,  
lying in a four-dimensional space, we cannot sketch them effectively in our three-
dimensional frame of reference. We can see how the function behaves, however, by look-
ing at its three-dimensional level surfaces.

FIGURE 14.7 Contours on Mt. Washington in New Hampshire. 
(Source: United States Geological Survey)

FIGURE 14.8 The level surfaces of 
( ) = + +f x y z x y z, , 2 2 2  are concen-

tric spheres (Example 4).
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EXAMPLE 4  Describe the level surfaces of the function

( ) = + +f x y z x y z, , .2 2 2

Solution The value of f  is the distance from the origin to the point ( )x y z, , . Each level sur-
face + + = >x y z c c, 0,2 2 2  is a sphere of radius c centered at the origin. Figure 14.8 
shows a cutaway view of three of these spheres. The level surface + + =x y z 02 2 2  
consists of the origin alone.

We are not graphing the function here; we are looking at level surfaces in the function’s 
domain. The level surfaces show how the function’s values change as we move through its 
domain. If we remain on a sphere of radius c centered at the origin, the function maintains a 
constant value, namely c. If we move from a point on one sphere to a point on another, the 
function’s value changes. It increases if we move away from the origin and decreases if we 
move toward the origin. The way the values change depends on the direction we take. The 
dependence of change on direction is important. We return to it in Section 14.5. 

The definitions of interior, boundary, open, closed, bounded, and unbounded for 
regions in space are similar to those for regions in the plane. To accommodate the extra 
dimension, we use solid balls of positive radius instead of disks.

DEFINITIONS A point ( )x y z, ,0 0 0  in a region R in space is an interior point 
of R if it is the center of a solid ball that lies entirely in R (Figure 14.9a). A point 
( )x y z, ,0 0 0  is a boundary point of R if every solid ball centered at ( )x y z, ,0 0 0  
contains points that lie outside of R as well as points that lie inside R (Figure 14.9b). 
The interior of R is the set of interior points of R. The boundary of R is the set 
of boundary points of R.

A region is open if it consists entirely of interior points. A region is closed if 
it contains its entire boundary.

A region is bounded if it lies inside a solid ball of finite radius; otherwise, the 
region is unbounded.

Examples of open sets in space include the interior of a sphere, the open half-space 
>z 0, the first octant (where x, y, and z are all positive), and space itself. Examples of 

closed sets in space include lines, planes, and the closed half-space ≥z 0. A solid sphere 

FIGURE 14.9 Interior points and bound-
ary points of a region in space. As with 
regions in the plane, a boundary point need 
not belong to the space region R.
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with part of its boundary removed or a solid cube with a missing face, edge, or corner point 
is neither open nor closed.

Functions of more than three independent variables are also important. For example, a 
model that measures temperature in the atmosphere may depend not only on the location 
of the point ( )P x y z, ,  in space, but also on the time t when it is measured, so we would 
write ( )=T f x y z t, , , .

FIGURE 14.10 This graph shows the 
seasonal variation of the temperature 
below ground as a fraction of surface 
temperature (Example 5).
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Computer Graphing

Three-dimensional graphing software makes it possible to graph functions of two vari-
ables. We can often get information more quickly from a graph than from a formula, since 
the surfaces reveal increasing and decreasing behavior, and high points or low points.

EXAMPLE 5  The temperature w beneath Earth’s surface is a function of the depth x 
beneath the surface and the time t of the year. If we measure x in feet and t as the number 
of days elapsed from the expected date of the yearly highest surface temperature, we can 
model the variation in temperature with the function

( )= × −− −w t x ecos 1.7 10 0.2 .x2 0.2

(The temperature at 0 ft is scaled to vary from +1 to −1, so that the variation at x feet can 
be interpreted as a fraction of the variation at the surface.)

Figure 14.10 shows a graph of the function. At a depth of 15 ft, the variation (change 
in vertical amplitude in the figure) is about 5% of the surface variation. At 25 ft, there is 
almost no variation during the year.

The graph also shows that the temperature 15 ft below the surface is about half a year 
out of phase with the surface temperature. When the temperature is lowest on the surface 
(late January, say), it is at its highest 15 ft below. Fifteen feet below the ground, the seasons 
are reversed. 

Figure 14.11 shows computer-generated graphs of a number of functions of two vari-
ables together with their level curves.

FIGURE 14.11 Computer-generated graphs and level curves of typical functions of two variables.
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Domain, Range, and Level Curves
In Exercises 1–4, find the specific function values.

 1. ( ) = +f x y x xy, 2 3

 a. ( )f 0, 0 b. ( )−f 1,1

 c. ( )f 2, 3  d. ( )− −f 3, 2

 2. ( ) =f x y xy, sin ( )

 a. π( )f 2,
6

 b. π( )−f 3,
12

 c. π( )f , 1
4

 d. π( )− −f
2

, 7

 3. ( ) = −
+

f x y z
x y

y z
, ,

2 2

 a. ( )−f 3, 1, 2  b. ( )−f 1, 1
2

, 1
4

 c. ( )−f 0, 1
3

, 0  d. ( )f 2, 2,100

 4. ( ) = − − −f x y z x y z, , 49 2 2 2

 a. ( )f 0, 0, 0  b. ( )−f 2, 3, 6

 c. ( )−f 1, 2, 3  d. ( )f 4
2

, 5
2

, 6
2

In Exercises 5–12, find and sketch the domain for each function.

 5. ( ) = − −f x y y x, 2

 6. ( ) ( )= + −f x y x y, ln 42 2

 7. ( )
( )

( )

( )

( )
= − +

− −
f x y

x y
y x y x

,
1 2

3

 8. ( ) =
+ −

f x y
xy

x y
,

sin ( )
252 2

 9. ( ) ( )= −−f x y y x, cos 1 2

 10. ( ) ( )= + − −f x y xy x y, ln 1

 11. ( ) ( )( )= − −f x y x y, 4 92 2

 12. ( )
( )

=
− −

f x y
x y

, 1
ln 4 2 2

In Exercises 13–16, find and sketch the level curves ( ) =f x y c,  on 
the same set of coordinate axes for the given values of c. We refer to 
these level curves as a contour map.

 13. ( ) = + − = − − −f x y x y c, 1, 3, 2, 1, 0,1, 2, 3

 14. ( ) = + =f x y x y c, , 0,1, 4, 9,16, 252 2

 15. ( ) = = − − −f x y xy c, , 9, 4, 1, 0,1, 4, 9

 16. ( ) = − − =f x y x y c, 25 , 0,1, 2, 3, 42 2

In Exercises 17–30, (a) find the function’s domain, (b) find the func-
tion’s range, (c) describe the function’s level curves, (d) find the 
boundary of the function’s domain, (e) determine whether the domain 
is an open region, a closed region, or neither, and (f) decide whether 
the domain is bounded or unbounded.

 17. ( ) = −f x y y x,  18. ( ) = −f x y y x,

 19. ( ) = +f x y x y, 4 92 2 20. ( ) = −f x y x y, 2 2

 21. ( ) =f x y xy,  22. ( ) =f x y y x, 2

 23. ( ) =
− −

f x y
x y

, 1
16 2 2

 24. ( ) = − −f x y x y, 9 2 2

 25. ( ) ( )= +f x y x y, ln 2 2  26. ( ) = ( )− +f x y e, x y2 2

 27. ( ) ( )= −−f x y y x, sin 1  28. ( )( ) = −f x y
y
x

, tan 1

 29. ( ) ( )= + −f x y x y, ln 12 2  30. ( ) ( )= − −f x y x y, ln 9 2 2

Matching Surfaces with Level Curves
Exercises 31–36 show level curves for six functions. The graphs of 
these functions are given on the next page (items a–f  ), as are their 
equations (items g–l). Match each set of level curves with the appro-
priate graph and the appropriate equation.

 31. 

x

y
 32. 

y

x

 33. 

x

y
 34. 

x

y

 35. 

x

y
 36. 

x

y

EXERCISES 14.1 
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z

x y

 g. = −
+

z
xy

x y

2

2 2
 h. = − −z y y x2 4 2

 i. ( )( )= − +z x y ecos cos x y 42 2

 j. = −z e xcosy  k. =
+

z
x y

1
4 2 2

 l. 
( )

= −
+

z
xy x y

x y

2 2

2 2

Functions of Two Variables
Display the values of the functions in Exercises 37–48 in two ways: 
(a) by sketching the surface ( )=z f x y,  and (b) by drawing an 
assortment of level curves in the function’s domain. Label each level 
curve with its function value.

 37. ( ) =f x y y, 2 38. ( ) =f x y x,

 39. ( ) = +f x y x y, 2 2 40. ( ) = +f x y x y, 2 2

 41. ( ) = −f x y x y, 2  42. ( ) = − −f x y x y, 4 2 2

 43. ( ) = +f x y x y, 4 2 2  44. ( ) = − −f x y x y, 6 2 3

 45. ( ) = −f x y y, 1  46. ( ) = − −f x y x y, 1

 47. ( ) = + +f x y x y, 42 2  48. ( ) = + −f x y x y, 42 2

Finding Level Curves
In Exercises 49–52, find an equation for, and sketch the graph of, the 
level curve of the function ( )f x y,  that passes through the given point.

 49. ( )( ) = − −f x y x y, 16 , 2 2, 22 2

 50. ( ) ( )= −f x y x, 1, 1, 02

 51. ( ) ( )= + − −f x y x y, 3, 3, 12

 52. ( ) ( )= −
+ +

−f x y
y x

x y
,

2
1

, 1,1

Sketching Level Surfaces
In Exercises 53–60, sketch a typical level surface for the function.

 53. ( ) = + +f x y z x y z, , 2 2 2 54. ( ) ( )= + +f x y z x y z, , ln 2 2 2

 55. ( ) = +f x y z x z, ,  56. ( ) =f x y z z, ,

 57. ( ) = +f x y z x y, , 2 2 58. ( ) = +f x y z y z, , 2 2

 59. ( ) = − −f x y z z x y, , 2 2

 60. ( ) ( ) ( ) ( )= + +f x y z x y z, , 25 16 92 2 2

Finding Level Surfaces
In Exercises 61–64, find an equation for the level surface of the func-
tion through the given point.

 61. ( ) ( )= − − −f x y z x y z, , ln , 3, 1,1

z

v
x

 a. 

z

y
x

 b. 

x y

z c. 

x

y

z d. 

z

x

y

 e. 

 f. 
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 62. ( ) ( )( )= + + −f x y z x y z, , ln , 1, 2,12 2

 63. ( )( ) = + + −g x y z x y z, , , 1, 1, 22 2 2

 64. ( ) ( )= − +
+ −

−g x y z
x y z
x y z

, ,
2

, 1, 0, 2

In Exercises 65–68, find and sketch the domain of f . Then find an 
equation for the level curve or surface of the function passing through 
the given point.

 65. ∑( ) ( )=







=

∞

f x y x
y

, , 1, 2
n

n

0

 66. ∑( ) ( )
( )

= +

=

∞

g x y z
x y

n z
, ,

!
, ln 4, ln 9, 2

n

n

n
0

 67. ∫ θ
θ

( ) ( )=
−

f x y d,
1

, 0,1
x

y

2

 68. ∫ ∫ θ
θ

( )( ) =
+

+
−

g x y z dt
t

d, ,
1 4

, 0,1, 3
x

y z

2 20

COMPUTER EXPLORATIONS
Use a CAS to perform the following steps for each of the functions in 
Exercises 69–72.

 a. Plot the surface over the given rectangle.

 b. Plot several level curves in the rectangle.

 c. Plot the level curve of f  through the given point.

 69. π π( ) = + ≤ ≤ ≤ ≤f x y x
y

y x x y, sin
2

sin 2 , 0 5 , 0 5 , 

π π( )P 3 , 3

 70. π( ) ( )( )= ≤ ≤+f x y x y e x, sin cos , 0 5 ,x y 82 2  
π π π( )≤ ≤y P0 5 , 4 , 4

 71. π π( ) ( )= + − ≤ ≤f x y x y x, sin 2 cos , 2 2 , 
π π π π( )− ≤ ≤y P2 2 , ,

 72. π( ) ( )= + ≤ ≤( )−f x y e x y x,  sin , 0 2 ,x y 2 20.1  
π π π π( )− ≤ ≤ −y P2 , ,

Use a CAS to plot the implicitly defined level surfaces in  
Exercises 73–76.

 73. ( )+ + =x y z4 ln 12 2 2  74. + =x z 12 2

 75. + − =x y z3 12 2

 76. ( ) ( )− + =x y x zsin
2

cos 22 2

Parametrized Surfaces Just as you describe curves in the plane 
parametrically with a pair of equations = =x f t y g t( ), ( ) defined on 
some parameter interval I, you can sometimes describe surfaces in space 
with a triple of equations υ υ υ( ) ( ) ( )= = =x f u y g u z h u, , , , ,  
defined on some parameter rectangle υ≤ ≤ ≤ ≤a u b c d, . 
Many computer algebra systems permit you to plot such surfaces in  
parametric mode. (Parametrized surfaces are discussed in detail in 
Section 16.5.) Use a CAS to plot the surfaces in Exercises 77–80. 
Also plot several level curves in the xy-plane.

 77. υ υ= = = ≤ ≤x u y u z u ucos , sin , , 0 2, 
υ π≤ ≤0 2

 78. υ υ υ= = = ≤ ≤x u y u z ucos , sin , , 0 2, 
υ π≤ ≤0 2

 79. υ υ( ) ( )= + = + =x u y u z u2 cos cos , 2 cos sin , sin , 
π υ π≤ ≤ ≤ ≤u0 2 , 0 2

 80. υ υ= = =x u y u z u2 cos cos , 2 cos sin , 2 sin , 
π υ π≤ ≤ ≤ ≤u0 2 , 0

DEFINITION Suppose that every open circular disk centered at ( )x y,0 0  con-
tains a point in the domain of f  other than ( )x y,0 0  itself. We say that a function 
( )f x y,  approaches the limit L as ( )x y,  approaches ( )x y,0 0 , and write

( ) =
( ) ( )→

f x y Llim , ,
x y x y, ,0 0

if, for every number ε > 0, there exists a corresponding number δ > 0 such that 
for all ( )x y,  in the domain of f ,

ε δ( ) ( ) ( )− < < − + − <f x y L x x y y, whenever 0 .0
2

0
2

In this section we develop limits and continuity for multivariable functions. The theory is 
similar to that developed for single-variable functions, but since we now have more than 
one independent variable, there is additional complexity that requires some new ideas.

14.2 Limits and Continuity in Higher Dimensions

Limits for Functions of Two Variables

If the values of ( )f x y,  lie arbitrarily close to a fixed real number L for all points ( )x y,  
sufficiently close to a point ( )x y,0 0 , we say that f  approaches the limit L as ( )x y,  
approaches ( )x y,0 0 . This is similar to the informal definition for the limit of a function of 
a single variable. Notice, however, that when ( )x y,0 0  lies in the interior of f ’s domain, 
( )x y,  can approach ( )x y,0 0  from any direction, not just from the left or the right. For the 
limit to exist, the same limiting value must be obtained whatever direction of approach is 
taken. We illustrate this issue in several examples following the definition.


