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FIGURE 13.17 As P moves along the 
curve in the direction of increasing arc 
length, the unit tangent vector turns.  
The value of d dsT  at P is called the 
curvature of the curve at P.
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κ is the Greek letter kappa.

DEFINITION If T is the unit tangent vector of a smooth curve in the plane, then 
the curvature function of the curve is

d
ds
T .κ =

Formula for Calculating Curvature
If tr( ) is a smooth curve in the plane, then the curvature is the scalar function

 d
dtv
T1 ,κ =  (1)

where T v v=  is the unit tangent vector.

FIGURE 13.18 Along a straight line,  
T always points in the same direction. The 
curvature, d dsT , is zero (Example 1).

T

In this section we study how a curve turns or bends. To gain perspective, we look first at 
curves in the coordinate plane. Then we consider curves in space.

13.4 Curvature and Normal Vectors of a Curve

Curvature of a Plane Curve

As a particle moves along a smooth curve in the plane, d dsT r=  turns as the curve 
bends. Since T is a unit vector, its length remains constant and only its direction changes 
as the particle moves along the curve. The rate at which T turns per unit of length along the 
curve is called the curvature (Figure 13.17). The traditional symbol for the curvature func-
tion is the Greek letter κ (“kappa”).

If d dsT  is large, T turns sharply as the particle passes through P, and the curvature 
at P is large. If d dsT  is close to zero, T turns more slowly, and the curvature at P is 
smaller.

If a smooth curve tr( ) is already given in terms of some parameter t other than the arc 
length parameter s, we can calculate the curvature as

κ = =

=

=

d
ds

d
dt

dt
ds

ds dt
d
dt

d
dt

T T

T

v
T

1

1 .

Chain Rule

ds
dt

v=

Testing the definition, we see in Examples 1 and 2 below that the curvature is constant 
for straight lines and circles.

EXAMPLE 1  A straight line is parametrized by t tr C v( ) = +  for constant vectors 
C and v. Thus, tr v( ) ,′ =  and the unit tangent vector T v v=  is a constant vector that 
always points in the same direction and has derivative 0 (Figure 13.18). It follows that, for 
any value of the parameter t, the curvature of the straight line is zero:

κ = = =d
dtv
T

v
01 1 0. 
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EXAMPLE 2 Here we find the curvature of a circle. We begin with the parametrization

( ) ( )= +t a t a tr i j( ) cos sin

of a circle of radius a. Then

( ) ( )

( ) ( )

= = − +

= − + = = =

d
dt

a t a t

a t a t a a a

v r i j

v

sin cos

sin cos .2 2 2   Since a a a0, .> =

From this we find

( ) ( )

( ) ( )

= = − +

= − −

= + =

t t

d
dt

t t

d
dt

t t

T v
v

i j

T i j

T

sin cos

cos sin

cos sin 1.2 2

Hence, for any value of the parameter t, the curvature of the circle is

d
dt a av
T1 1 (1) 1 1

radius
.κ = = = =  

FIGURE 13.19 The vector d dsT , 
normal to the curve, always points in the 
direction in which T is turning. The unit 
normal vector N is the direction of d dsT .
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Among the vectors orthogonal to the unit tangent vector T, there is one of particular 
significance because it points in the direction in which the curve is turning. Since T has 
constant length (because its length is always 1), the derivative d dsT  is orthogonal to T 
(Equation 4, Section 13.1). Therefore, if we divide d dsT  by its length ,κ  we obtain a unit 
vector N orthogonal to T (Figure 13.19).

The vector d dsT  points in the direction in which T turns as the curve bends. 
Therefore, if we face in the direction of increasing arc length, the vector d dsT  points 
toward the right if T turns clockwise and toward the left if T turns counterclockwise. In 
other words, the principal normal vector N will point toward the concave side of the curve 
(Figure 13.19).

If a smooth curve tr( ) is already given in terms of some parameter t other than the arc 
length parameter s, we can use the Chain Rule to calculate N directly:

( )( )

=

=

=

d ds
d ds

d dt dt ds
d dt dt ds

d dt
d dt

N
T
T

T
T

T
T

.     dt
ds ds dt

1 0 cancels.= >

This formula enables us to find N without having to find κ and s first.

DEFINITION At a point where 0,κ ≠  the principal unit normal vector for a
smooth curve in the plane is

d
ds

N T1 .
κ

=
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EXAMPLE 3  Find T and N for the circular motion

( ) ( )= +t t tr i j( ) cos 2 sin 2 .

Solution We first find T:

( ) ( )

( ) ( )

= − +

= + =

= = − +

t t

t t

t t

v i j

v

T v
v

i j

2 sin 2 2 cos 2

4 sin 2 4 cos 2 2

sin 2 cos 2 .

2 2

From this we find

( ) ( )= − −

= + =

d
dt

t t

d
dt

t t

T i j

T

2 cos 2 2 sin 2

4 cos 2 4 sin 2 22 2

and

( ) ( )= = − −
d dt
d dt

t tN
T
T

i jcos 2 sin 2 .    Eq. (2)

Notice that T N 0,⋅ =  verifying that N is orthogonal to T. Notice too, that for the circular 
motion here, N points from tr( ) toward the circle’s center at the origin. 

Formula for Calculating N
If tr( ) is a smooth curve in the plane, then the principal unit normal is

 
d dt
d dt

N
T
T

,=  (2)

where T v v=  is the unit tangent vector.

FIGURE 13.20 The center of the  
osculating circle at P x y,( ) lies toward the 
inner side of the curve.
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EXAMPLE 4  Find and graph the osculating circle of the parabola y x 2=  at the  
origin.

Solution We parametrize the parabola using the parameter t x= (Section 11.1,
Example 5):

t t tr i j( ) .2= +

Circle of Curvature for Plane Curves

The circle of curvature or osculating circle at a point P on a plane curve where 0κ ≠  is 
the circle in the plane of the curve that

1. is tangent to the curve at P (has the same tangent line the curve has)

2. has the same curvature the curve has at P

3. has center that lies toward the concave or inner side of the curve (as in Figure 13.20).

The radius of curvature of the curve at P is the radius of the circle of curvature, 
which, according to Example 2, is

Radius of curvature 1 .ρ
κ

= =

To find ,ρ  we find κ and take the reciprocal. The center of curvature of the curve at P is 
the center of the circle of curvature.
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First we find the curvature of the parabola at the origin, using Equation (1):

= = +

= +

d
dt

t

t

v r i j

v

2

1 4 2

so that

t t tT v
v

i j1 4 2 1 4 .2 1 2 2 1 2( ) ( )= = + + +− −

From this we find

d
dt

t t t t tT i j4 1 4 2 1 4 8 1 4 .2 3 2 2 1 2 2 2 3 2( ) ( ) ( )= − + + + − + 
− − −

At the origin, t 0,=  so the curvature is

κ( )
( )

( )

( )

=

= +

= + =

d
dtv
T

i j

0 1
0

0

1
1

0 2

1 0 2 2.2 2

  Eq. (1)

Therefore, the radius of curvature is 1 1 2κ = . At the origin we have t 0=  and T i,=  
so N j.=  Thus the center of the circle is 0,1 2( ). The equation of the osculating circle is

x y0 1
2

1
2

.2
2 2

( ) ( )( )− + − =

You can see from Figure 13.21 that the osculating circle is a better approximation to the 
parabola at the origin than is the tangent line approximation y 0.=  

FIGURE 13.21 The osculating circle 
for the parabola y x 2=  at the origin 
(Example 4).
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EXAMPLE 5  Find the curvature for the helix (Figure 13.22)

( ) ( )= + + ≥ + ≠t a t a t bt a b a br i j k( ) cos sin , , 0, 0.2 2

Solution We calculate T from the velocity vector v:

( ) ( )

( ) ( )[ ]

= − + +

= + + = +

= =
+

− + +

a t a t b

a t a t b a b

a b
a t a t b

v i j k

v

T v
v

i j k

sin cos

sin cos

1 sin cos .

2 2 2 2 2 2 2

2 2

FIGURE 13.22 The helix

( ) ( )= + +t a t a t btr i j k( ) cos sin ,

drawn with a and b positive and  t 0≥  
(Example 5).
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Curvature and Normal Vectors for Space Curves

If a smooth curve in space is specified by the position vector tr( ) as a function of some 
parameter t, and if s is the arc length parameter of the curve, then the unit tangent vector T 
is d dsr v v .=  The curvature in space is then defined to be

 κ = =d
ds

d
dt

T
v

T1  (3)

just as for plane curves. The vector d dsT  is orthogonal to T, and we define the principal 
unit normal to be

 d
ds

d dt
d dt

N T T
T

1 .
κ

= =  (4)
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Plane Curves
Find T, N, and κ for the plane curves in Exercises 1–4.

 1. π π( )= + − < <t t t tr i j( ) ln cos , 2 2

 2. π π( )= + − < <t t t tr i j( ) ln sec , 2 2

 3. t t tr i j( ) 2 3 5 2( )( )= + + −

 4. ( ) ( )= + + − >t t t t t t t tr i j( ) cos sin sin cos , 0

 5. A formula for the curvature of the graph of a function in the 
xy-plane 

 a. The graph y f x( )=  in the xy-plane automatically has the 
parametrization = =x x y f x, ( ), and the vector formula 

x x f xr i j( ) ( ) .= +  Use this formula to show that if f is a 
twice-differentiable function of x, then

x
f x

f x
( )

( )

1 ( )
.

2 3 2κ
( )

= ′′

+ ′ 
 b. Use the formula for κ in part (a) to find the curvature of 

π π( )= − < <y x xln cos , 2 2. Compare your answer 
with the answer in Exercise 1.

 c. Show that the curvature is zero at a point of inflection.

 6. A formula for the curvature of a parametrized plane curve 

 a. Show that the curvature of a smooth curve 
t f t g tr i j( ) ( ) ( )= +  defined by twice-differentiable func-

tions x f t( )=  and y g t( )=  is given by the formula

κ
[ ]

= ′ ′′ − ′ ′′
′ + ′
x y y x

x y( ) ( )
.

2 2 3 2

Apply this formula to find the curvatures of the following 
curves.

 b. π( )= + < <t t t tr i j( ) ln sin , 0

 c. ( )[ ] ( )= +t t tr i j( ) arctan sinh ln cosh

 7. Normals to plane curves 

 a. Show that t g t f tn i j( ) ( ) ( )= − ′ + ′  and 
t g t f tn i j( ) ( ) ( )− = ′ − ′  are both normal to the curve 

t f t g tr i j( ) ( ) ( )= +  at the point f t g t( ( ),  ( )).

To obtain N for a particular plane curve, we can choose the one of 
n or n−  from part (a) that points toward the concave side of the 
curve, and make it into a unit vector. (See Figure 13.19.) Apply 
this method to find N for the following curves.

EXERCISES 13.4 

Then we use Equation (3):

κ

( ) ( )[ ]

( ) ( )

( ) ( )

=

=
+ +

− −

=
+

− −

=
+

+ =
+

d
dt

a b a b
a t a t

a
a b

t t

a
a b

t t a
a b

v
T

i j

i j

1

1 1 cos sin

cos sin

cos sin .

2 2 2 2

2 2

2 2

2 2

2 2

From this equation, we see that increasing b for a fixed a decreases the curvature. 
Decreasing a for a fixed b eventually decreases the curvature as well.

If b 0,=  the helix reduces to a circle of radius a, and its curvature reduces to a1 , as 
it should. If a 0,=  the helix becomes the z-axis, and its curvature reduces to 0, again as it 
should. 

EXAMPLE 6  Find N for the helix in Example 5 and describe how the vector is pointing.

Solution We have

( ) ( )[ ]

( ) ( )[ ]

( ) ( )

= −
+

+

=
+

+ =
+

=

= − + ⋅
+

+

= − −

d
dt a b

a t a t

d
dt a b

a t a t a
a b

d dt
d dt

a b
a a b

a t a t

t t

T i j

T

N
T
T

i j

i j

1 cos sin

1 cos sin

1 cos sin

cos sin .

2 2

2 2
2 2 2 2

2 2

2 2

2 2

Example 5

Eq. (4)

Thus, N is parallel to the xy-plane and always points toward the z-axis. 
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 b. t t er i j( ) t2= +

 c. t t t tr i j( ) 4 , 2 22= − + − ≤ ≤

 8. (Continuation of Exercise 7)

 a. Use the method of Exercise 7 to find N for the curve 
t t tr i j( ) 1 3 3( )= +  when t 0;<  when t 0.>

 b. Calculate N for t 0≠  directly from T using Equation (4) for 
the curve in part (a). Does N exist at t 0?=  Graph the  
curve and explain what is happening to N as t passes from 
negative to positive values.

Space Curves
Find T, N, and κ for the space curves in Exercises 9–16.

 9. ( ) ( )= + +t t t tr i j k( ) 3 sin 3 cos 4

 10. ( ) ( )= + + − +t t t t t t tr i j k( ) cos sin sin cos 3

 11. ( ) ( )= + +t e t e tr i j k( ) cos sin 2t t

 12. ( ) ( )= + +t t t tr i j k( ) 6 sin 2 6 cos 2 5

 13. t t t tr i j k( ) 3 2 , 03 2( ) ( )= + + >

 14. π( ) ( )= + < <t t t tr j k( ) cos sin , 0 23 3

 15. ( )( )= + >t t a t a ar i k( ) cosh , 0

 16. ( ) ( )= − +t t t tr i j k( ) cosh sinh

More on Curvature

 17. Show that the parabola y ax a,  0,2= ≠  has its largest curva-
ture at its vertex and has no minimum curvature. (Note: Since the 
curvature of a curve remains the same if the curve is translated or 
rotated, this result is true for any parabola.)

 18. Show that the ellipse = = > >x a t y b t a bcos , sin , 0, has 
its largest curvature on its major axis and its smallest curvature on 
its minor axis. (The same is true for any ellipse.)

 19. Maximizing the curvature of a helix In Example 5, we found  
the curvature of the helix t a t a t btr i j k( ) cos sin( ) ( )= + +  
a b, 0( )≥  to be a a b .2 2κ ( )= +  What is the largest value κ 

can have for a given value of b? Give reasons for your answer.

 20. Total curvature We find the total curvature of the portion of a 
smooth curve that runs from s s0=  to s s s1 0= >  by integrat-
ing κ from s0 to s .1  If the curve has some other parameter, say t, 
then the total curvature is

K ds ds
dt

dt dtv ,
s

s

t

t

t

t

0

1

0

1

0

1

∫ ∫ ∫κ κ κ= = =

where t0 and t1 correspond to s0 and s .1  Find the total curvatures of

 a. The portion of the helix ( ) ( )= + +t t t tr i j k( ) 3 cos 3 sin , 
t0 4 .π≤ ≤

 b. The parabola y x x,  .2= −∞ < < ∞

 21. Find an equation for the circle of curvature of the curve 
( )= +t t tr i j( ) sin  at the point 2,1 .π( )  (The curve param-

etrizes the graph of =y xsin  in the xy-plane.)

 22. Find an equation for the circle of curvature of the curve 
t t t t e t er i j( ) 2 ln 1 , ,2 2( ) ( )[ ]= − + ≤ ≤−  at the point 

0, 2 ,( )−  where t 1.=

The formula

x
f x

f x
( )

( )

1 ( )
,

2 3 2κ
( )

=
′′

+ ′ 

T

derived in Exercise 5, expresses the curvature x( )κ  of a twice-
differentiable plane curve y f x( )=  as a function of x. Find the 
curvature function of each of the curves in Exercises 23–26. Then 
graph f x( ) together with x( )κ  over the given interval. You will find 
some surprises.

 23. y x x, 2 22= − ≤ ≤  24. y x x4, 2 24= − ≤ ≤

 25. π= ≤ ≤y x xsin , 0 2  26. y e x, 1 2x= − ≤ ≤

In Exercises 27 and 28, determine the maximum curvature for the 
graph of each function.

 27. =f x x( ) ln  28. f x x
x

x( )
1

for 1=
+

> −

 29. Osculating circle Show that the center of the osculating 
circle for the parabola y x 2=  at the point a a, 2( ) is located at 

a a4 , 3 1
2

3 2( )− + .

 30. Osculating circle Find a parametrization of the osculating cir-
cle for the parabola y x 2=  when x 1= .

COMPUTER EXPLORATIONS
In Exercises 31–38 you will use a CAS to explore the osculating circle 
at a point P on a plane curve where 0.κ ≠  Use a CAS to perform the 
following steps:

 a. Plot the plane curve given in parametric or function form over 
the specified interval to see what it looks like.

 b. Calculate the curvature κ of the curve at the given value t0 
using the appropriate formula from Exercise 5 or 6. Use the 
parametrization x t=  and y f t( )=  if the curve is given as a 
function y f x( ).=

 c. Find the unit normal vector N at t .0  Notice that the signs of 
the components of N depend on whether the unit tangent vec-
tor T is turning clockwise or counterclockwise at t t .0=  (See 
Exercise 7.)

 d. If a bC i j= +  is the vector from the origin to the center a b,( ) 
of the osculating circle, find the center C from the vector  
equation

t
t

tC r N( ) 1
( )

( ).0
0

0κ
= +

The point ( )P x y,0 0  on the curve is given by the position  
vector tr( ).0

 e. Plot implicitly the equation x a y b 12 2 2κ( )( )− + − =   
of the osculating circle. Then plot the curve and osculating 
circle together. You may need to experiment with the size of 
the viewing window, but be sure the axes are equally scaled.

 31. π π( ) ( )= + ≤ ≤ =t t t t tr i j( ) 3 cos 5 sin , 0 2 , 40

 32. π π( ) ( )= + ≤ ≤ =t t t t tr i j( ) cos sin , 0 2 , 43 3
0

 33. ( )= + − − ≤ ≤ =t t t t t tr i j( ) 3 , 4 4, 3 52 3
0

 34. t t t t t
t

t tr i j( ) 2 3
1

, 2 5, 13 2
2 0( )= − − +

+
− ≤ ≤ =

 35. π( ) ( )= − + − ≤ ≤t t t t tr i j( ) 2 sin 2 2 cos , 0 3 , 
t 3 20 π=

 36. π π( ) ( )= + ≤ ≤ =− −t e t e t t tr i j( ) cos sin , 0 6 , 4t t
0

 37. y x x x x, 2 5, 12
0= − − ≤ ≤ =

 38. y x x x x1 , 1 2, 1 22 5
0( )= − − ≤ ≤ =


