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DEFINITION The length of a smooth curve = + +t x t y t z tr i j k( ) ( ) ( ) ( ) , 
≤ ≤a t b, that is traced exactly once as t increases from =t a to =t b is

 L dx
dt

dy
dt

dz
dt

dt.
a

b
2 2 2

∫ ( )( ) ( )= + +  (1)

Arc Length Formula

 ∫=L dtv
a

b
 (2)

FIGURE 13.13 The helix in Example 1, 
( ) ( )= + +t t t tr i j k( ) cos sin .
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FIGURE 13.12 Smooth curves can be 
scaled like number lines, the coordinate of 
each point being its directed distance along 
the curve from a preselected base point.
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In this and the next two sections, we study the mathematical features of a curve’s shape 
that describe the sharpness of its turning and its twisting.

13.3 Arc Length in Space

Arc Length Along a Space Curve

One of the features of smooth space and plane curves is that they have a measurable length. 
This enables us to locate points along these curves by giving their directed distance s along 
the curve from some base point, the way we locate points on coordinate axes by giving 
their directed distance from the origin (Figure 13.12). This is what we did for plane curves 
in Section 11.2.

To measure distance along a smooth curve in space, we add a z-term to the formula we 
use for curves in the plane.

Just as for plane curves, we can calculate the length of a curve in space from any con-
venient parametrization that meets the stated conditions. We omit the proof.

The square root in Equation (1) is v , the length of a velocity vector d dtr . This 
enables us to write the formula for length a shorter way.

EXAMPLE 1  A glider is soaring upward along the helix

( ) ( )= + +t t t tr i j k( ) cos sin .

How long is the glider’s path from =t 0 to π=t 2 ?

Solution The path segment during this time corresponds to one full turn of the helix 
(Figure 13.13). The length of this portion of the curve is

∫ ∫

∫ π

( ) ( ) ( )= = − + +

= =

π

π

L dt t t dt

dt

v sin cos 1

2 2 2  units of length.
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b 2 2 2
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0
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This is 2 times the circumference of the circle in the xy-plane over which the helix 
stands. 

If we choose a base point P t( )0  on a smooth curve C parametrized by t, each value of 
t determines a point =P t x t y t z t( ) ( ( ), ( ), ( )) on C and a “directed distance”

∫ τ τ=s t dv( ) ( ) ,
t

t

0
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measured along C from the base point (Figure 13.14). This is the arc length function we 
defined in Section 11.2 for plane curves that have no z-component. If >t t ,0  s t( ) is the 
distance along the curve from P t( )0  to P t( ). If <t t ,0  s t( ) is the negative of the distance. 
Each value of s determines a point on C, and this parametrizes C with respect to s. We call 
s an arc length parameter for the curve. The parameter’s value increases in the direction 
of increasing t. We will see that the arc length parameter is particularly effective for inves-
tigating the turning and twisting nature of a space curve.

FIGURE 13.14 The directed distance 
along the curve from P t( )0  to any point 

P t( ) is ∫ τ τ=s t dv( ) ( ) .
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 ∫ ∫τ τ τ τ τ τ[ ] [ ] [ ]= ′ + ′ + ′ =s t x y z d dv( ) ( ) ( ) ( ) ( )
t

t

t

t2 2 2

0 0

 (3)

τ is the Greek letter tau (rhymes with 
“now”)
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We use the Greek letter τ (“tau”) as the variable of integration in Equation (3) because 
the letter t is already in use as the upper limit.

If a curve tr( ) is already given in terms of some parameter t, and s t( ) is the arc length 
function given by Equation (3), then we may be able to solve for t as a function of s:  
=t t s( ). Then the curve can be reparametrized in terms of s by substituting for t: 
= t sr r( ( )). The new parametrization identifies a point on the curve with its directed dis-

tance along the curve from the base point.

Unlike the case that appears in Example 2, the arc length parametrization is generally 
difficult to find analytically for a curve already given in terms of some other parameter t. 
Fortunately, however, we rarely need an exact formula for s t( ) or its inverse t s( ).

Speed on a Smooth Curve

Since the derivatives beneath the radical in Equation (3) are continuous (the curve is 
smooth), the Fundamental Theorem of Calculus tells us that s is a differentiable function of 
t with derivative

 =ds
dt

tv( ) . (4)

EXAMPLE 2  This is an example for which we can actually find the arc length param-
etrization of a curve. If =t 0,0  then the arc length parameter along the helix

( ) ( )= + +t t t tr i j k( ) cos sin

from t0 to t is

∫

∫

τ τ

τ

=

=

=

s t d

d

t

v( ) ( )

2

2 .

t

t

t

0

0

Eq. (3)

Value from Example 1

Solving this equation for t gives =t s 2. Substituting into the position vector r gives the 
following arc length parametrization for the helix:

 ( ) ( )= + +t s s s sr i j k( ( )) cos
2

sin
2 2

. 
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FIGURE 13.16 Counterclockwise 
motion around the unit circle.
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FIGURE 13.15 We find the unit tangent 
vector T by dividing v by its length v .
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Although the base point P t( )0  plays a role in defining s in Equation (3), it plays no 
role in Equation (4). The rate at which a moving particle covers distance along its path is 
independent of how far away it is from the base point. Equation (4) says that this rate is the 
magnitude of v.

Notice that >ds dt 0 since, by definition, v  is never zero for a smooth curve. We 
see once again that s is an increasing function of t.

Unit Tangent Vector

On a smooth curve, we already know that the velocity vector = d dtv r  is tangent to the 
curve tr( ) and that the vector

=T v
v

is therefore a unit vector tangent to the curve, called the unit tangent vector (Figure 13.15). 
The unit tangent vector T for a smooth curve is a differentiable function of t whenever v is 
a differentiable function of t. As we will see in Section 13.5, T is one of three unit vectors 
in a traveling reference frame that is used to describe the motion of objects traveling in 
three dimensions.

EXAMPLE 3  Find the unit tangent vector of the curve

( ) ( )= + + +t t t tr i j k( ) 1 3 cos 3 sin 2

representing the path of the glider in Example 3, Section 13.2.

Solution In that example, we found

( ) ( )= = − + +d
dt

t t tv r i j k3 sin 3 cos 2

and

= + tv 9 4 .2

Thus,

= = −
+

+
+

+
+

t

t

t

t

t

t
T v

v
i j k

3 sin

9 4

3 cos

9 4

2

9 4
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2 2 2
 

For the counterclockwise motion

( ) ( )= +t t tr i j( ) cos sin

around the unit circle, we see that

( ) ( )= − +t tv i jsin cos

is already a unit vector, so =T v and T is orthogonal to r (Figure 13.16).
The velocity vector is the change in the position vector r with respect to time t, but 

how does the position vector change with respect to arc length? More precisely, what is the 
derivative d dsr ? Since >ds dt 0 for the curves we are considering, s is one-to-one and 
has an inverse that gives t as a differentiable function of s (Section 3.8). The derivative of 
the inverse is

= =dt
ds ds dt v

1 1 .

This makes r a differentiable function of s whose derivative can be calculated with the
Chain Rule to be

 = = = =d
ds

d
dt

dt
ds

r r v
v

v
v

T1 . (5)

This equation says that d dsr  is the unit tangent vector in the direction of the velocity  
vector v (Figure 13.15).
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Finding Tangent Vectors and Lengths
In Exercises 1–8, find the curve’s unit tangent vector. Also, find the 
length of the indicated portion of the curve.

 1. π( ) ( )= + + ≤ ≤t t t t tr i j k( ) 2 cos 2 sin 5 , 0

 2. π( ) ( )= + + ≤ ≤t t t t tr i j k( ) 6 sin 2 6 cos 2 5 , 0

 3. ( )= + ≤ ≤t t t tr i k( ) 2 3 , 0 83 2

 4. ( ) ( )= + − + + ≤ ≤t t t t tr i j k( ) 2 1 , 0 3

 5. π( ) ( )= + ≤ ≤t t t tr j k( ) cos sin , 0 23 3

 6. = − − ≤ ≤t t t t tr i j k( ) 6 2 3 , 1 23 3 3

 7. π( )( ) ( )= + + ≤ ≤t t t t t t tr i j k( ) cos sin 2 2 3 , 03 2

 8. ( ) ( )= + + − ≤ ≤t t t t t t t tr i j( ) sin cos cos sin , 2 2

 9. Find the point on the curve

( ) ( )= + +t t t tr i j k( ) 5 sin 5 cos 12

at a distance π26  units along the curve from the point ( )0, 5, 0  in 
the direction corresponding to increasing t values.

 10. Find the point on the curve

( ) ( )= − +t t t tr i j k( ) 12 sin 12 cos 5

at a distance π13  units along the curve from the point ( )−0, 12, 0  
in the direction corresponding to decreasing t values.

Arc Length Parameter
In Exercises 11–14, find the arc length parameter along the curve from 
the point where =t 0 by evaluating the integral

∫ τ τ=s t dv( ) ( )
t

0

from Equation (3). Then use the formula for s t( ) to find the length of 
the indicated portion of the curve.

 11. π( ) ( )= + + ≤ ≤t t t t tr i j k( ) 4 cos 4 sin 3 , 0 2

 12. π π( ) ( )= + + − ≤ ≤t t t t t t t tr i j( ) cos sin sin cos , 2

 13. ( ) ( )= + + − ≤ ≤t e t e t e tr i j k( ) cos sin   , ln 4 0t t t

 14. ( ) ( ) ( )= + + + + − − ≤ ≤t t t t tr i j k( ) 1 2 1 3 6 6 , 1 0

Theory and Examples

 15. Arc length Find the length of the curve

( ) ( ) ( )= + + −t t t tr i j k( ) 2 2 1 2

from ( )0, 0,1  to ( )2, 2, 0 .

 16. Length of helix The length π2 2 of the turn of the helix in 
Example 1 is also the length of the diagonal of a square π2  units 
on a side. Show how to obtain this square by cutting away and 
flattening a portion of the cylinder around which the helix winds.

 17. Ellipse 

 a. Show that the curve ( ) ( ) ( )= + + −t t t tr i j k( ) cos sin 1 cos , 
π≤ ≤t0 2 , is an ellipse by showing that it is the intersection 

of a right circular cylinder and a plane. Find equations for the 
cylinder and plane.

 b. Sketch the ellipse on the cylinder. Add to your sketch the unit 
tangent vectors at π π=t 0, 2, , and 3 2.π

 c. Show that the acceleration vector always lies parallel to the 
plane (orthogonal to a vector normal to the plane). Thus, if 
you draw the acceleration as a vector attached to the ellipse, it 
will lie in the plane of the ellipse. Add the acceleration vectors 
for t 0, 2, ,π π=  and 3 2π  to your sketch.

 d. Write an integral for the length of the ellipse. Do not try to 
evaluate the integral; it is nonelementary.

 e. Numerical integrator Estimate the length of the ellipse to 
two decimal places.

 18. Length is independent of parametrization To illustrate that 
the length of a smooth space curve does not depend on the param-
etrization you use to compute it, calculate the length of one turn of 
the helix in Example 1 with the following parametrizations.

 a. π( ) ( )= + + ≤ ≤t t t t tr i j k( ) cos 4 sin 4 4 , 0 2

 b. t t t t tr i j k( ) cos  2 sin 2 2 , 0 4π( )[ ] ( )[ ] ( )= + + ≤ ≤

 c. π( ) ( )= − − − ≤ ≤t t t t tr i j k( ) cos sin , 2 0

 19. The involute of a circle If a string wound around a fixed circle 
is unwound while held taut in the plane of the circle, its end P 
traces an involute of the circle. In the accompanying figure, the 
circle in question is the circle x y 12 2+ =  and the tracing point 
starts at 1, 0( ). The unwound portion of the string is tangent to the 
circle at Q, and t is the radian measure of the angle from the posi-
tive x-axis to segment OQ. Derive the parametric equations

= + = − >x t t t y t t t tcos sin , sin cos , 0

of the point P x y,( ) for the involute.
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 20. (Continuation of Exercise 19.) Find the unit tangent vector to the 
involute of the circle at the point P x y,( ).

 21. Distance along a line Show that if u is a unit vector, then the 
arc length parameter along the line t P tr u( ) 0= +  from the 
point P x y z, ,0 0 0 0( ) where t 0= , is t itself.

 22. Use Simpson’s Rule with n 10=  to approximate the length of arc 
of t t t tr i j k( ) 2 3= + +  from the origin to the point 2, 4, 8( ).
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