13.3 Arc Length in Space

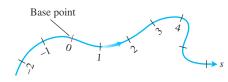


FIGURE 13.12 Smooth curves can be scaled like number lines, the coordinate of each point being its directed distance along the curve from a preselected base point.

In this and the next two sections, we study the mathematical features of a curve's shape that describe the sharpness of its turning and its twisting.

Arc Length Along a Space Curve

One of the features of smooth space and plane curves is that they have a measurable length. This enables us to locate points along these curves by giving their directed distance *s* along the curve from some base point, the way we locate points on coordinate axes by giving their directed distance from the origin (Figure 13.12). This is what we did for plane curves in Section 11.2.

To measure distance along a smooth curve in space, we add a *z*-term to the formula we use for curves in the plane.

DEFINITION The **length** of a smooth curve $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$, $a \le t \le b$, that is traced exactly once as t increases from t = a to t = b is

$$L = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2} + \left(\frac{dz}{dt}\right)^{2}} dt.$$
 (1)

Just as for plane curves, we can calculate the length of a curve in space from any convenient parametrization that meets the stated conditions. We omit the proof.

The square root in Equation (1) is $|\mathbf{v}|$, the length of a velocity vector $d\mathbf{r}/dt$. This enables us to write the formula for length a shorter way.

Arc Length Formula

$$L = \int_{a}^{b} |\mathbf{v}| \, dt \tag{2}$$

EXAMPLE 1 A glider is soaring upward along the helix

$$\mathbf{r}(t) = (\cos t)\mathbf{i} + (\sin t)\mathbf{j} + t\mathbf{k}.$$

How long is the glider's path from t = 0 to $t = 2\pi$?

Solution The path segment during this time corresponds to one full turn of the helix (Figure 13.13). The length of this portion of the curve is

$$L = \int_{a}^{b} |\mathbf{v}| dt = \int_{0}^{2\pi} \sqrt{(-\sin t)^{2} + (\cos t)^{2} + (1)^{2}} dt$$
$$= \int_{0}^{2\pi} \sqrt{2} dt = 2\pi\sqrt{2} \text{ units of length.}$$

This is $\sqrt{2}$ times the circumference of the circle in the *xy*-plane over which the helix stands.

If we choose a base point $P(t_0)$ on a smooth curve C parametrized by t, each value of t determines a point P(t) = (x(t), y(t), z(t)) on C and a "directed distance"

$$s(t) = \int_{t_0}^t \left| \mathbf{v}(\tau) \right| d\tau$$

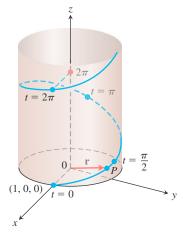


FIGURE 13.13 The helix in Example 1, $\mathbf{r}(t) = (\cos t)\mathbf{i} + (\sin t)\mathbf{j} + t\mathbf{k}.$

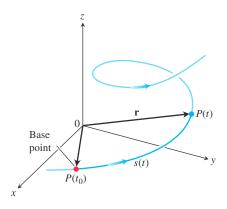
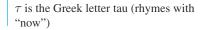


FIGURE 13.14 The directed distance along the curve from $P(t_0)$ to any point P(t) is $s(t) = \int_{t_0}^t |\mathbf{v}(\tau)| d\tau$.



measured along *C* from the base point (Figure 13.14). This is the arc length function we defined in Section 11.2 for plane curves that have no *z*-component. If $t > t_0$, s(t) is the distance along the curve from $P(t_0)$ to P(t). If $t < t_0$, s(t) is the negative of the distance. Each value of *s* determines a point on *C*, and this parametrizes *C* with respect to *s*. We call *s* an **arc length parameter** for the curve. The parameter's value increases in the direction of increasing *t*. We will see that the arc length parameter is particularly effective for investigating the turning and twisting nature of a space curve.

Arc Length Parameter with Base Point
$$P(t_0)$$

$$s(t) = \int_{t_0}^t \sqrt{[x'(\tau)]^2 + [y'(\tau)]^2 + [z'(\tau)]^2} d\tau = \int_{t_0}^t |\mathbf{v}(\tau)| d\tau \qquad (3)$$

We use the Greek letter τ ("tau") as the variable of integration in Equation (3) because the letter *t* is already in use as the upper limit.

If a curve $\mathbf{r}(t)$ is already given in terms of some parameter t, and s(t) is the arc length function given by Equation (3), then we may be able to solve for t as a function of s: t = t(s). Then the curve can be reparametrized in terms of s by substituting for t: $\mathbf{r} = \mathbf{r}(t(s))$. The new parametrization identifies a point on the curve with its directed distance along the curve from the base point.

EXAMPLE 2 This is an example for which we can actually find the arc length parametrization of a curve. If $t_0 = 0$, then the arc length parameter along the helix

$$\mathbf{r}(t) = (\cos t)\mathbf{i} + (\sin t)\mathbf{j} + t\mathbf{k}$$

from t_0 to t is

$$s(t) = \int_{t_0}^{t} |\mathbf{v}(\tau)| d\tau \qquad \text{Eq. (3)}$$
$$= \int_{0}^{t} \sqrt{2} d\tau \qquad \text{Value from Example 1}$$
$$= \sqrt{2} t.$$

Solving this equation for t gives $t = s/\sqrt{2}$. Substituting into the position vector **r** gives the following arc length parametrization for the helix:

$$\mathbf{r}(t(s)) = \left(\cos\frac{s}{\sqrt{2}}\right)\mathbf{i} + \left(\sin\frac{s}{\sqrt{2}}\right)\mathbf{j} + \frac{s}{\sqrt{2}}\mathbf{k}.$$

Unlike the case that appears in Example 2, the arc length parametrization is generally difficult to find analytically for a curve already given in terms of some other parameter *t*. Fortunately, however, we rarely need an exact formula for s(t) or its inverse t(s).

Speed on a Smooth Curve

Since the derivatives beneath the radical in Equation (3) are continuous (the curve is smooth), the Fundamental Theorem of Calculus tells us that s is a differentiable function of t with derivative

$$\frac{ds}{dt} = |\mathbf{v}(t)|. \tag{4}$$

HISTORICAL BIOGRAPHY Josiah Willard Gibbs (1839–1903) www.bit.ly/2xZS8pg Although the base point $P(t_0)$ plays a role in defining *s* in Equation (3), it plays no role in Equation (4). The rate at which a moving particle covers distance along its path is independent of how far away it is from the base point. Equation (4) says that this rate is the magnitude of **v**.

Notice that ds/dt > 0 since, by definition, $|\mathbf{v}|$ is never zero for a smooth curve. We see once again that *s* is an increasing function of *t*.

Unit Tangent Vector

On a smooth curve, we already know that the velocity vector $\mathbf{v} = d\mathbf{r}/dt$ is tangent to the curve $\mathbf{r}(t)$ and that the vector

$$\Gamma = \frac{\mathbf{v}}{|\mathbf{v}|}$$

is therefore a unit vector tangent to the curve, called the **unit tangent vector** (Figure 13.15). The unit tangent vector **T** for a smooth curve is a differentiable function of t whenever **v** is a differentiable function of t. As we will see in Section 13.5, **T** is one of three unit vectors in a traveling reference frame that is used to describe the motion of objects traveling in three dimensions.

EXAMPLE 3 Find the unit tangent vector of the curve

$$\mathbf{r}(t) = (1 + 3\cos t)\mathbf{i} + (3\sin t)\mathbf{j} + t^2\mathbf{k}$$

representing the path of the glider in Example 3, Section 13.2.

Solution In that example, we found

$$\mathbf{v} = \frac{d\mathbf{r}}{dt} = -(3\sin t)\mathbf{i} + (3\cos t)\mathbf{j} + 2t\mathbf{k}$$

 $|\mathbf{v}| = \sqrt{9 + 4t^2}.$

Thus,

and

 $\mathbf{T} = \frac{\mathbf{v}}{|\mathbf{v}|} = -\frac{3\sin t}{\sqrt{9+4t^2}}\mathbf{i} + \frac{3\cos t}{\sqrt{9+4t^2}}\mathbf{j} + \frac{2t}{\sqrt{9+4t^2}}\mathbf{k}.$

For the counterclockwise motion

$$\mathbf{r}(t) = (\cos t)\mathbf{i} + (\sin t)\mathbf{j}$$

around the unit circle, we see that

$$\mathbf{v} = (-\sin t)\mathbf{i} + (\cos t)\mathbf{j}$$

is already a unit vector, so $\mathbf{T} = \mathbf{v}$ and \mathbf{T} is orthogonal to \mathbf{r} (Figure 13.16).

The velocity vector is the change in the position vector **r** with respect to time *t*, but how does the position vector change with respect to arc length? More precisely, what is the derivative $d\mathbf{r}/ds$? Since ds/dt > 0 for the curves we are considering, *s* is one-to-one and has an inverse that gives *t* as a differentiable function of *s* (Section 3.8). The derivative of the inverse is

$$\frac{dt}{ds} = \frac{1}{ds/dt} = \frac{1}{|\mathbf{v}|}.$$

This makes \mathbf{r} a differentiable function of *s* whose derivative can be calculated with the Chain Rule to be

$$\frac{d\mathbf{r}}{ds} = \frac{d\mathbf{r}}{dt}\frac{dt}{ds} = \mathbf{v}\frac{1}{|\mathbf{v}|} = \frac{\mathbf{v}}{|\mathbf{v}|} = \mathbf{T}.$$
(5)

This equation says that $d\mathbf{r}/ds$ is the unit tangent vector in the direction of the velocity vector **v** (Figure 13.15).

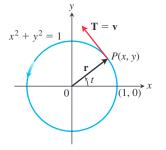


FIGURE 13.16 Counterclockwise motion around the unit circle.

 $P(t_0)$

FIGURE 13.15 We find the unit tangent vector \mathbf{T} by dividing \mathbf{v} by its length $|\mathbf{v}|$.

EXERCISES 13.3

Finding Tangent Vectors and Lengths

In Exercises 1–8, find the curve's unit tangent vector. Also, find the length of the indicated portion of the curve.

1. $\mathbf{r}(t) = (2\cos t)\mathbf{i} + (2\sin t)\mathbf{j} + \sqrt{5}t\mathbf{k}, \quad 0 \le t \le \pi$ **2.** $\mathbf{r}(t) = (6\sin 2t)\mathbf{i} + (6\cos 2t)\mathbf{j} + 5t\mathbf{k}, \quad 0 \le t \le \pi$ **3.** $\mathbf{r}(t) = t\mathbf{i} + (2/3)t^{3/2}\mathbf{k}, \quad 0 \le t \le 8$ **4.** $\mathbf{r}(t) = (2+t)\mathbf{i} - (t+1)\mathbf{j} + t\mathbf{k}, \quad 0 \le t \le 3$ **5.** $\mathbf{r}(t) = (\cos^3 t)\mathbf{j} + (\sin^3 t)\mathbf{k}, \quad 0 \le t \le \pi/2$ **6.** $\mathbf{r}(t) = 6t^3\mathbf{i} - 2t^3\mathbf{j} - 3t^3\mathbf{k}, \quad 1 \le t \le 2$ **7.** $\mathbf{r}(t) = (t\cos t)\mathbf{i} + (t\sin t)\mathbf{j} + (2\sqrt{2}/3)t^{3/2}\mathbf{k}, \quad 0 \le t \le \pi$ **8.** $\mathbf{r}(t) = (t\sin t + \cos t)\mathbf{i} + (t\cos t - \sin t)\mathbf{j}, \quad \sqrt{2} \le t \le 2$ **9.** Find the point on the curve

$$\mathbf{r}(t) = (5\sin t)\mathbf{i} + (5\cos t)\mathbf{j} + 12t\mathbf{k}$$

at a distance 26π units along the curve from the point (0, 5, 0) in the direction corresponding to increasing *t* values.

10. Find the point on the curve

$$\mathbf{r}(t) = (12\sin t)\mathbf{i} - (12\cos t)\mathbf{j} + 5t\mathbf{k}$$

at a distance 13π units along the curve from the point (0, -12, 0) in the direction corresponding to decreasing *t* values.

Arc Length Parameter

In Exercises 11–14, find the arc length parameter along the curve from the point where t = 0 by evaluating the integral

$$s(t) = \int_0^t |\mathbf{v}(\tau)| \, d\tau$$

from Equation (3). Then use the formula for s(t) to find the length of the indicated portion of the curve.

11. $\mathbf{r}(t) = (4\cos t)\mathbf{i} + (4\sin t)\mathbf{j} + 3t\mathbf{k}, \quad 0 \le t \le \pi/2$ **12.** $\mathbf{r}(t) = (\cos t + t\sin t)\mathbf{i} + (\sin t - t\cos t)\mathbf{j}, \quad \pi/2 \le t \le \pi$ **13.** $\mathbf{r}(t) = (e^t \cos t)\mathbf{i} + (e^t \sin t)\mathbf{j} + e^t \mathbf{k}, \quad -\ln 4 \le t \le 0$ **14.** $\mathbf{r}(t) = (1 + 2t)\mathbf{i} + (1 + 3t)\mathbf{j} + (6 - 6t)\mathbf{k}, \quad -1 \le t \le 0$

Theory and Examples

15. Arc length Find the length of the curve

$$\mathbf{r}(t) = (\sqrt{2}t)\mathbf{i} + (\sqrt{2}t)\mathbf{j} + (1-t^2)\mathbf{k}$$

from (0, 0, 1) to $(\sqrt{2}, \sqrt{2}, 0)$.

16. Length of helix The length $2\pi\sqrt{2}$ of the turn of the helix in Example 1 is also the length of the diagonal of a square 2π units on a side. Show how to obtain this square by cutting away and flattening a portion of the cylinder around which the helix winds.

17. Ellipse

- **a.** Show that the curve $\mathbf{r}(t) = (\cos t)\mathbf{i} + (\sin t)\mathbf{j} + (1 \cos t)\mathbf{k}$, $0 \le t \le 2\pi$, is an ellipse by showing that it is the intersection of a right circular cylinder and a plane. Find equations for the cylinder and plane.
- **b.** Sketch the ellipse on the cylinder. Add to your sketch the unit tangent vectors at $t = 0, \pi/2, \pi, \text{ and } 3\pi/2$.

- **c.** Show that the acceleration vector always lies parallel to the plane (orthogonal to a vector normal to the plane). Thus, if you draw the acceleration as a vector attached to the ellipse, it will lie in the plane of the ellipse. Add the acceleration vectors for t = 0, $\pi/2$, π , and $3\pi/2$ to your sketch.
- **d.** Write an integral for the length of the ellipse. Do not try to evaluate the integral; it is nonelementary.
- **e. Numerical integrator** Estimate the length of the ellipse to two decimal places.
- **18. Length is independent of parametrization** To illustrate that the length of a smooth space curve does not depend on the parametrization you use to compute it, calculate the length of one turn of the helix in Example 1 with the following parametrizations.

a.
$$\mathbf{r}(t) = (\cos 4t)\mathbf{i} + (\sin 4t)\mathbf{j} + 4t\mathbf{k}, \quad 0 \le t \le \pi/2$$

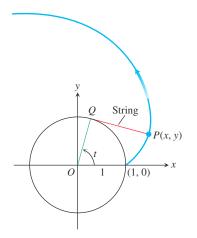
b. $\mathbf{r}(t) = [\cos (t/2)]\mathbf{i} + [\sin(t/2)]\mathbf{j} + (t/2)\mathbf{k}, \quad 0 \le t \le 4\pi$

c.
$$\mathbf{r}(t) = (\cos t)\mathbf{i} - (\sin t)\mathbf{j} - t\mathbf{k}, \quad -2\pi \le t \le 0$$

19. The involute of a circle If a string wound around a fixed circle is unwound while held taut in the plane of the circle, its end *P* traces an *involute* of the circle. In the accompanying figure, the circle in question is the circle $x^2 + y^2 = 1$ and the tracing point starts at (1, 0). The unwound portion of the string is tangent to the circle at *Q*, and *t* is the radian measure of the angle from the positive *x*-axis to segment *OQ*. Derive the parametric equations

 $x = \cos t + t \sin t, \quad y = \sin t - t \cos t, \quad t > 0$

of the point P(x, y) for the involute.



- **20.** (*Continuation of Exercise 19.*) Find the unit tangent vector to the involute of the circle at the point *P*(*x*, *y*).
- **21. Distance along a line** Show that if **u** is a unit vector, then the arc length parameter along the line $\mathbf{r}(t) = P_0 + t\mathbf{u}$ from the point $P_0(x_0, y_0, z_0)$ where t = 0, is t itself.
- **22.** Use Simpson's Rule with n = 10 to approximate the length of arc of $\mathbf{r}(t) = t\mathbf{i} + t^2\mathbf{j} + t^3\mathbf{k}$ from the origin to the point (2, 4, 8).