- **47. Differentiable vector functions are continuous** Show that if $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$ is differentiable at $t = t_0$, then it is continuous at t_0 as well.
- **48.** Constant Function Rule Prove that if **u** is the vector function with the constant value **C**, then $d\mathbf{u}/dt = \mathbf{0}$.

COMPUTER EXPLORATIONS

Use a CAS to perform the following steps in Exercises 49–52.

- **a.** Plot the space curve traced out by the position vector \mathbf{r} .
- **b.** Find the components of the velocity vector $d\mathbf{r}/dt$.
- **c.** Evaluate $d\mathbf{r}/dt$ at the given point t_0 and determine the equation of the tangent line to the curve at $\mathbf{r}(t_0)$.
- **d.** Plot the tangent line together with the curve over the given interval.
- **49.** $\mathbf{r}(t) = (\sin t t \cos t)\mathbf{i} + (\cos t + t \sin t)\mathbf{j} + t^2\mathbf{k}, 0 \le t \le 6\pi, t_0 = 3\pi/2$
- **50.** $\mathbf{r}(t) = \sqrt{2}t\,\mathbf{i} + e^t\,\mathbf{j} + e^{-t}\,\mathbf{k}, \ -2 \le t \le 3, \ t_0 = 1$
- **51.** $\mathbf{r}(t) = (\sin 2t)\mathbf{i} + (\ln(1+t))\mathbf{j} + t\mathbf{k}, \quad 0 \le t \le 4\pi, t_0 = \pi/4$

52.
$$\mathbf{r}(t) = (\ln(t^2 + 2))\mathbf{i} + (\arctan 3t)\mathbf{j} + \sqrt{t^2 + 1}\mathbf{k}, -3 \le t \le 5, \ t_0 = 3$$

In Exercises 53 and 54, you will explore graphically the behavior of the helix

$$\mathbf{r}(t) = (\cos at)\mathbf{i} + (\sin at)\mathbf{j} + bt\mathbf{k}$$

as you change the values of the constants *a* and *b*. Use a CAS to perform the steps in each exercise.

- **53.** Set b = 1. Plot the helix $\mathbf{r}(t)$ together with the tangent line to the curve at $t = 3\pi/2$ for a = 1, 2, 4, and 6 over the interval $0 \le t \le 4\pi$. Describe in your own words what happens to the graph of the helix and the position of the tangent line as a increases through these positive values.
- 54. Set a = 1. Plot the helix $\mathbf{r}(t)$ together with the tangent line to the curve at $t = 3\pi/2$ for b = 1/4, 1/2, 2, and 4 over the interval $0 \le t \le 4\pi$. Describe in your own words what happens to the graph of the helix and the position of the tangent line as *b* increases through these positive values.

13.2 Integrals of Vector Functions; Projectile Motion

In this section we investigate integrals of vector functions and their application to motion along a path in space or in the plane.

Integrals of Vector Functions

A differentiable vector function $\mathbf{R}(t)$ is an **antiderivative** of a vector function $\mathbf{r}(t)$ on an interval *I* if $d\mathbf{R}/dt = \mathbf{r}$ at each point of *I*. If **R** is an antiderivative of **r** on *I*, it can be shown, working one component at a time, that every antiderivative of **r** on *I* has the form $\mathbf{R} + \mathbf{C}$ for some constant vector **C** (Exercise 45). The set of all antiderivatives of **r** on *I* is the **indefinite integral** of **r** on *I*.

DEFINITION The **indefinite integral** of \mathbf{r} with respect to t is the set of all antiderivatives of \mathbf{r} , denoted by

 $\int \mathbf{r}(t) dt.$

The usual arithmetic rules for indefinite integrals apply.

EXAMPLE 1

1 To integrate a vector function, we integrate each of its components.

$$\int ((\cos t)\mathbf{i} + \mathbf{j} - 2t\mathbf{k}) dt = \left(\int \cos t \, dt\right)\mathbf{i} + \left(\int dt\right)\mathbf{j} - \left(\int 2t \, dt\right)\mathbf{k}$$
(1)

$$= (\sin t + C_1)\mathbf{i} + (t + C_2)\mathbf{j} - (t^2 + C_3)\mathbf{k}$$
(2)

$$= (\sin t)\mathbf{i} + t\mathbf{j} - t^2\mathbf{k} + \mathbf{C} \qquad \mathbf{C} = C_1\mathbf{i} + C_2\mathbf{j} - C_3\mathbf{k}$$

As in the integration of scalar functions, we recommend that you skip the steps in Equations (1) and (2) and go directly to the final form. Find an antiderivative for each component and add a *constant vector* at the end.

Definite integrals of vector functions are best defined in terms of components. The definition is consistent with how we compute limits and derivatives of vector functions.

DEFINITION If the components of $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$ are integrable over [a, b], then so is \mathbf{r} , and the **definite integral** of \mathbf{r} from a to b is

$$\int_{a}^{b} \mathbf{r}(t) dt = \left(\int_{a}^{b} f(t) dt\right) \mathbf{i} + \left(\int_{a}^{b} g(t) dt\right) \mathbf{j} + \left(\int_{a}^{b} h(t) dt\right) \mathbf{k}.$$

EXAMPLE 2 As in Example 1, we integrate each component.

$$\int_0^{\pi} ((\cos t)\mathbf{i} + \mathbf{j} - 2t\mathbf{k}) dt = \left(\int_0^{\pi} \cos t \, dt\right)\mathbf{i} + \left(\int_0^{\pi} dt\right)\mathbf{j} - \left(\int_0^{\pi} 2t \, dt\right)\mathbf{k}$$
$$= \left[\sin t\right]_0^{\pi} \mathbf{i} + \left[t\right]_0^{\pi} \mathbf{j} - \left[t^2\right]_0^{\pi} \mathbf{k}$$
$$= [0 - 0]\mathbf{i} + [\pi - 0]\mathbf{j} - [\pi^2 - 0^2]\mathbf{k}$$
$$= \pi \mathbf{j} - \pi^2 \mathbf{k}$$

The Fundamental Theorem of Calculus for continuous vector functions says that

$$\int_{a}^{b} \mathbf{r}(t) dt = \mathbf{R}(t) \Big]_{a}^{b} = \mathbf{R}(b) - \mathbf{R}(a),$$

where **R** is any antiderivative of **r**, so that $\mathbf{R}'(t) = \mathbf{r}(t)$ (Exercise 46). Notice that an antiderivative of a vector function is also a vector function, whereas a definite integral of a vector function is a single constant vector.

EXAMPLE 3 Suppose we do not know the path of a hang glider, but only its acceleration vector $\mathbf{a}(t) = -(3 \cos t)\mathbf{i} - (3 \sin t)\mathbf{j} + 2\mathbf{k}$. We also know that initially (at time t = 0) the glider departed from the point (4, 0, 0) with velocity $\mathbf{v}(0) = 3\mathbf{j}$. Find the glider's position as a function of t.

Solution Our goal is to find $\mathbf{r}(t)$ knowing

The differential equation:
$$\mathbf{a} = \frac{d^2\mathbf{r}}{dt^2} = -(3\cos t)\mathbf{i} - (3\sin t)\mathbf{j} + 2\mathbf{k}$$

The initial conditions: $\mathbf{v}(0) = 3\mathbf{j}$ and $\mathbf{r}(0) = 4\mathbf{i} + 0\mathbf{j} + 0\mathbf{k}$.

Integrating both sides of the differential equation with respect to t gives

$$\mathbf{v}(t) = -(3\sin t)\mathbf{i} + (3\cos t)\mathbf{j} + 2t\mathbf{k} + \mathbf{C}_{1}$$

We use $\mathbf{v}(0) = 3\mathbf{j}$ to find \mathbf{C}_1 :

$$3\mathbf{j} = -(3\sin 0)\mathbf{i} + (3\cos 0)\mathbf{j} + (0)\mathbf{k} + \mathbf{C}_1$$

$$3\mathbf{j} = 3\mathbf{j} + \mathbf{C}_1$$

$$\mathbf{C}_1 = 0.$$

The glider's velocity as a function of time is

$$\frac{d\mathbf{r}}{dt} = \mathbf{v}(t) = -(3\sin t)\mathbf{i} + (3\cos t)\mathbf{j} + 2t\mathbf{k}.$$

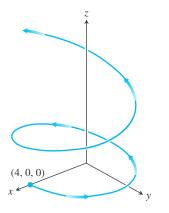
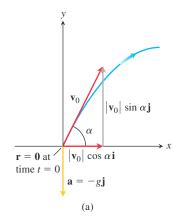


FIGURE 13.9 The path of the hang glider in Example 3. Although the path spirals around the *z*-axis, it is not a helix.



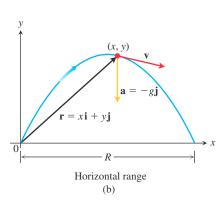


FIGURE 13.10 (a) Position, velocity, acceleration, and launch angle at t = 0. (b) Position, velocity, and acceleration at a later time *t*.

Integrating both sides of this last differential equation gives

$$\mathbf{r}(t) = (3\cos t)\mathbf{i} + (3\sin t)\mathbf{j} + t^2\mathbf{k} + \mathbf{C}_2$$

We then use the initial condition $\mathbf{r}(0) = 4\mathbf{i}$ to find \mathbf{C}_2 :

$$4\mathbf{i} = (3\cos 0)\mathbf{i} + (3\sin 0)\mathbf{j} + (0^2)\mathbf{k} + \mathbf{C}_2$$

$$4\mathbf{i} = 3\mathbf{i} + (0)\mathbf{j} + (0)\mathbf{k} + \mathbf{C}_2$$

$$\mathbf{C}_2 = \mathbf{i}.$$

The glider's position as a function of *t* is

$$\mathbf{r}(t) = (1 + 3\cos t)\mathbf{i} + (3\sin t)\mathbf{j} + t^2\mathbf{k}.$$

This is the path of the glider shown in Figure 13.9. Although the path resembles that of a helix due to its spiraling nature around the *z*-axis, it is not a helix because of the way it is rising. (We say more about this in Section 13.5.)

The Vector and Parametric Equations for Ideal Projectile Motion

A classic example of integrating vector functions is the derivation of the equations for the motion of a projectile. In physics, projectile motion describes how an object fired at some angle from an initial position, and acted upon by only the force of gravity, moves in a vertical coordinate plane. In the classic example, we ignore the effects of any frictional drag on the object, which may vary with its speed and altitude, and also the fact that the force of gravity changes slightly with the projectile's changing height. In addition, we ignore the long-distance effects of Earth turning beneath the projectile, such as in a rocket launch or the firing of a projectile from a cannon. Ignoring these effects gives us a reasonable approximation of the motion in most cases.

To derive equations for projectile motion, we assume that the projectile behaves like a particle moving in a vertical coordinate plane and that the only force acting on the projectile during its flight is the constant force of gravity, which always points straight down. The magnitude of the gravitational acceleration g is approximately 9.8 m/sec² at sea level, or 32 ft/sec². We assume that the projectile is launched from the origin at time t = 0 into the first quadrant with an initial velocity \mathbf{v}_0 (Figure 13.10). If \mathbf{v}_0 makes an angle α with the horizontal, then

$$\mathbf{v}_0 = (|\mathbf{v}_0| \cos \alpha)\mathbf{i} + (|\mathbf{v}_0| \sin \alpha)\mathbf{j}$$

If we use the simpler notation v_0 for the initial speed $|\mathbf{v}_0|$, then

$$\mathbf{v}_0 = (v_0 \cos \alpha) \mathbf{i} + (v_0 \sin \alpha) \mathbf{j}. \tag{3}$$

The projectile's initial position is

$$\mathbf{\dot{t}}_0 = 0\mathbf{i} + 0\mathbf{j} = 0. \tag{4}$$

Newton's second law of motion says that the force acting on the projectile is equal to the projectile's mass *m* times its acceleration, or $m(d^2\mathbf{r}/dt^2)$, if **r** is the projectile's position vector and *t* is time. If the force is solely the gravitational force $-mg\mathbf{j}$, then

$$m \frac{d^2 \mathbf{r}}{dt^2} = -mg\mathbf{j}$$
 and $\frac{d^2 \mathbf{r}}{dt^2} = -g\mathbf{j}$

where g is the acceleration due to gravity. We find **r** as a function of t by solving the following initial value problem.

Differential equation:
$$\frac{d^2 \mathbf{r}}{dt^2} = -g\mathbf{j}$$

Initial conditions: $\mathbf{r} = \mathbf{r}_0$ and $\frac{d\mathbf{r}}{dt} = \mathbf{v}_0$ when $t = 0$

The first integration gives

$$\frac{d\mathbf{r}}{dt} = -(gt)\mathbf{j} + \mathbf{v}_0.$$

A second integration gives

$$\mathbf{r} = -\frac{1}{2}gt^2\mathbf{j} + \mathbf{v}_0t + \mathbf{r}_0.$$

Substituting the values of \mathbf{v}_0 and \mathbf{r}_0 from Equations (3) and (4) gives

$$\mathbf{r} = -\frac{1}{2}gt^2\mathbf{j} + \underbrace{(v_0\cos\alpha)t\mathbf{i} + (v_0\sin\alpha)t\mathbf{j}}_{\mathbf{v}_0t} + \mathbf{0}.$$

Collecting terms, we obtain the following.

Ideal Projectile Motion Equation

$$\mathbf{r} = (v_0 \cos \alpha) t \mathbf{i} + \left((v_0 \sin \alpha) t - \frac{1}{2} g t^2 \right) \mathbf{j}.$$
 (5)

Equation (5) is the *vector equation* of the path for ideal projectile motion. The angle α is the projectile's **launch angle (firing angle, angle of elevation)**, and v_0 , as we said before, is the projectile's **initial speed**. The components of **r** give the parametric equations

$$x = (v_0 \cos \alpha)t$$
 and $y = (v_0 \sin \alpha)t - \frac{1}{2}gt^2$, (6)

where x is the distance downrange and y is the height of the projectile at time $t \ge 0$.

EXAMPLE 4 A projectile is fired from the origin over horizontal ground at an initial speed of 500 m/sec and a launch angle of 60° . Where will the projectile be 10 sec later?

Solution We use Equation (5) with $v_0 = 500$, $\alpha = 60^\circ$, g = 9.8, and t = 10 to find the projectile's components 10 sec after firing.

$$\mathbf{r} = (\upsilon_0 \cos \alpha) t \mathbf{i} + \left((\upsilon_0 \sin \alpha) t - \frac{1}{2} g t^2 \right) \mathbf{j}$$
$$= (500) \left(\frac{1}{2} \right) (10) \mathbf{i} + \left((500) \left(\frac{\sqrt{3}}{2} \right) 10 - \left(\frac{1}{2} \right) (9.8) (100) \right) \mathbf{j}$$
$$\approx 2500 \mathbf{i} + 3840 \mathbf{j}$$

Ten seconds after firing, the projectile is about 3840 m above ground and 2500 m down-range from the origin.

Ideal projectiles move along parabolas, as we now deduce from Equations (6). If we substitute $t = x/(v_0 \cos \alpha)$ from the first equation into the second, we obtain the Cartesian coordinate equation

$$y = -\left(\frac{g}{2v_0^2 \cos^2 \alpha}\right) x^2 + (\tan \alpha) x.$$

This equation has the form $y = ax^2 + bx$, so its graph is a parabola.

A projectile reaches its highest point when its vertical velocity component is zero. When fired over horizontal ground, the projectile lands when its vertical component equals zero in Equation (5), and the **range** R is the distance from the origin to the point of impact. We summarize the results here, which you are asked to verify in Exercise 31.

Height, Flight Time, and Range for Ideal Projectile Motion

For ideal projectile motion when an object is launched from the origin over a horizontal surface with initial speed v_0 and launch angle α :

Maximum height:	$y_{\max} = \frac{\left(v_0 \sin \alpha\right)^2}{2g}$
Flight time:	$t = \frac{2v_0 \sin \alpha}{g}$
Range:	$R = \frac{{\upsilon_0}^2}{g} \sin 2\alpha$

If we fire our ideal projectile from the point (x_0, y_0) instead of the origin (Figure 13.11), the position vector for the path of motion is

$$\mathbf{r} = (x_0 + (v_0 \cos \alpha)t)\mathbf{i} + \left(y_0 + (v_0 \sin \alpha)t - \frac{1}{2}gt^2\right)\mathbf{j},\tag{7}$$

as you are asked to show in Exercise 33.

Projectile Motion with Wind Gusts

The next example shows how to account for another force acting on a projectile due to a gust of wind. We assume that the path of the baseball in Example 5 lies in a vertical plane.

EXAMPLE 5 A baseball is hit when it is 3 ft above the ground. It leaves the bat with initial speed of 152 ft/sec, making an angle of 20° with the horizontal. At the instant the ball is hit, an instantaneous gust of wind blows in the horizontal direction directly opposite the direction the ball is taking toward the outfield, adding a component of -8.8i(ft/sec) to the ball's initial velocity (8.8 ft/sec = 6 mph).

- (a) Find a vector equation (position vector) for the path of the baseball.
- (b) How high does the baseball go, and when does it reach maximum height?
- (c) Assuming that the ball is not caught, find its range and flight time.

Solution

(a) Using Equation (3) and accounting for the gust of wind, the initial velocity of the baseball is

$$\mathbf{v}_0 = (v_0 \cos \alpha) \mathbf{i} + (v_0 \sin \alpha) \mathbf{j} - 8.8 \mathbf{i}$$

= (152 cos 20°) \mathbf{i} + (152 sin 20°) \mathbf{j} - (8.8) \mathbf{i}
= (152 cos 20° - 8.8) \mathbf{i} + (152 sin 20°) \mathbf{j} .

The initial position is $\mathbf{r}_0 = 0\mathbf{i} + 3\mathbf{j}$. Integration of $d^2\mathbf{r}/dt^2 = -g\mathbf{j}$ gives

$$\frac{d\mathbf{r}}{dt} = -(gt)\mathbf{j} + \mathbf{v}_0.$$

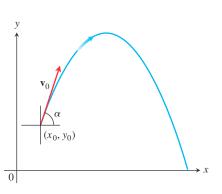


FIGURE 13.11 The path of a projectile fired from (x_0, y_0) with an initial velocity \mathbf{v}_0 at an angle of α degrees with the horizontal.

A second integration gives

$$\mathbf{r} = -\frac{1}{2}gt^2\mathbf{j} + \mathbf{v}_0t + \mathbf{r}_0.$$

Substituting the values of \mathbf{v}_0 and \mathbf{r}_0 into the last equation gives the position vector of the baseball.

$$\mathbf{r} = -\frac{1}{2}gt^{2}\mathbf{j} + \mathbf{v}_{0}t + \mathbf{r}_{0}$$

= -16t²\mathbf{j} + (152\cos 20^{\circ} - 8.8)t\mathbf{i} + (152\sin 20^{\circ})t\mathbf{j} + 3\mathbf{j}
= (152\cos 20^{\circ} - 8.8)t\mathbf{i} + (3 + (152\sin 20^{\circ})t - 16t^{2})\mathbf{j}.

(b) The baseball reaches its highest point when the vertical component of velocity is zero, or

$$\frac{dy}{dt} = 152\sin 20^\circ - 32t = 0.$$

Solving for t we find

$$t = \frac{152\sin 20^\circ}{32} \approx 1.62 \,\mathrm{sec.}$$

Substituting this time into the vertical component for r gives the maximum height

$$y_{\text{max}} = 3 + (152 \sin 20^{\circ})(1.62) - 16(1.62)^2 \approx 45.2 \,\text{ft.}$$

That is, the maximum height of the baseball is about 45.2 ft, reached about 1.6 sec after leaving the bat.

(c) To find when the baseball lands, we set the vertical component for **r** equal to 0 and solve for *t*:

$$3 + (152\sin 20^\circ)t - 16t^2 = 0$$

$$3 + (51.99)t - 16t^2 = 0.$$

The solution values are about $t = 3.3 \sec \text{ and } t = -0.06 \sec \text{. Substituting the positive time into the horizontal component for$ **r**, we find the range

 $R = (152\cos 20^\circ - 8.8)(3.3) \approx 442 \,\mathrm{ft.}$

Thus, the horizontal range is about 442 ft, and the flight time is about 3.3 sec.

In Exercises 41 and 42, we consider projectile motion when there is air resistance slowing down the flight.

EXERCISES 13.2

Integrating Vector-Valued Functions Evaluate the integrals in Exercises 1–10.

1.
$$\int_{0}^{1} [t^{3}\mathbf{i} + 7\mathbf{j} + (t+1)\mathbf{k}] dt$$

2.
$$\int_{1}^{2} [(6-6t)\mathbf{i} + 3\sqrt{t}\mathbf{j} + (\frac{4}{t^{2}})\mathbf{k}] dt$$

3.
$$\int_{-\pi/4}^{\pi/4} [(\sin t)\mathbf{i} + (1+\cos t)\mathbf{j} + (\sec^{2} t)\mathbf{k}] dt$$

4.
$$\int_{0}^{\pi/3} [(\sec t \tan t)\mathbf{i} + (\tan t)\mathbf{j} + (2\sin t \cos t)\mathbf{k}] dt$$

5.
$$\int_{1}^{4} [\frac{1}{t}\mathbf{i} + \frac{1}{5-t}\mathbf{j} + \frac{1}{2t}\mathbf{k}] dt$$

6. $\int_{0}^{1} \left[\frac{2}{\sqrt{1-t^{2}}} \mathbf{i} + \frac{\sqrt{3}}{1+t^{2}} \mathbf{k} \right] dt$ 7. $\int_{0}^{1} \left[te^{t^{2}} \mathbf{i} + e^{-t} \mathbf{j} + \mathbf{k} \right] dt$ 8. $\int_{1}^{\ln 3} \left[te^{t} \mathbf{i} + e^{t} \mathbf{j} + \ln t \mathbf{k} \right] dt$ 9. $\int_{0}^{\pi/2} \left[\cos t \mathbf{i} - \sin 2t \mathbf{j} + \sin^{2} t \mathbf{k} \right] dt$ 10. $\int_{0}^{\pi/4} \left[\sec t \mathbf{i} + \tan^{2} t \mathbf{j} - t \sin t \mathbf{k} \right] dt$

Initial Value Problems

Solve the initial value problems in Exercises 11-20 for **r** as a vector function of *t*.

- **11.** Differential equation: $\frac{d\mathbf{r}}{dt} = -t\mathbf{i} t\mathbf{j} t\mathbf{k}$ $\mathbf{r}(0) = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ Initial condition: $\frac{d\mathbf{r}}{dt} = (180t)\mathbf{i} + (180t - 16t^2)\mathbf{j}$ **12.** Differential equation:
 - r(0) = 100iInitial condition:
- **13.** Differential equation: Initial condition:

$$\mathbf{r}(0) = \mathbf{k}$$

14. Differential equation: Initial condition:

$$\frac{d\mathbf{r}}{dt} = (t^3 + 4t)\mathbf{i} + t\mathbf{j} + 2t^2\mathbf{k}$$
$$\mathbf{r}(0) = \mathbf{i} + \mathbf{j}$$

 $\frac{d\mathbf{r}}{dt} = \frac{3}{2}(t+1)^{1/2}\mathbf{i} + e^{-t}\mathbf{j} + \frac{1}{t+1}\mathbf{k}$

15. Differential equation:

$$\frac{d\mathbf{r}}{dt} = (\tan t)\mathbf{i} + \left(\cos\left(\frac{1}{2}t\right)\right)\mathbf{j} - (\sec 2t)\mathbf{k}, -\frac{\pi}{4} < t < \frac{\pi}{4}$$

condition: $\mathbf{r}(0) = 3\mathbf{i} - 2\mathbf{j} + \mathbf{k}$

16. Differential equation:

Initial

$$\frac{d\mathbf{r}}{dt} = \left(\frac{t}{t^2+2}\right)\mathbf{i} - \left(\frac{t^2+1}{t-2}\right)\mathbf{j} + \left(\frac{t^2+4}{t^2+3}\right)\mathbf{k}, t < 2$$

condition: $\mathbf{r}(0) = \mathbf{i} - \mathbf{j} + \mathbf{k}$

- Initial condition:
- $\frac{d^2\mathbf{r}}{dt^2} = -32\mathbf{k}$ **17.** Differential equation: r(0) = 100k and Initial conditions: $\frac{d\mathbf{r}}{dt}\Big|_{t=0} = 8\mathbf{i} + 8\mathbf{j}$ $\frac{d^2\mathbf{r}}{dt^2} = -(\mathbf{i} + \mathbf{j} + \mathbf{k})$ **18.** Differential equation: $\mathbf{r}(0) = 10\mathbf{i} + 10\mathbf{j} + 10\mathbf{k}$ and Initial conditions: $\frac{d\mathbf{r}}{dt}\Big|_{t=0} = \mathbf{0}$ $\frac{d^2\mathbf{r}}{dt^2} = e^t\mathbf{i} - e^{-t}\mathbf{j} + 4e^{2t}\mathbf{k}$ **19.** Differential equation: r(0) = 3i + j + 2k and Initial conditions: $\frac{d\mathbf{r}}{dt} = -\mathbf{i} + 4\mathbf{j}$
- **20.** Differential equation:

$$\frac{d^2 \mathbf{r}}{dt^2} = (\sin t)\mathbf{i} - (\cos t)\mathbf{j} + (4\sin t\cos t)\mathbf{k}$$

Initial conditions: $\mathbf{r}(0) = \mathbf{i} - \mathbf{k}$ and

$$\frac{d\mathbf{r}}{dt}\Big|_{t=0} = \mathbf{i}$$

Motion Along a Straight Line

- **21.** At time t = 0, a particle is located at the point (1, 2, 3). It travels in a straight line to the point (4, 1, 4), has speed 2 at (1, 2, 3), and has constant acceleration $3\mathbf{i} - \mathbf{j} + \mathbf{k}$. Find an equation for the position vector $\mathbf{r}(t)$ of the particle at time *t*.
- 22. A particle traveling in a straight line is located at the point (1, -1, 2) and has speed 2 at time t = 0. The particle moves toward the point (3, 0, 3) with constant acceleration $2\mathbf{i} + \mathbf{j} + \mathbf{k}$. Find its position vector $\mathbf{r}(t)$ at time t.

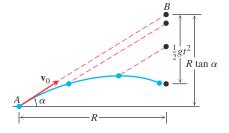
Projectile Motion

Projectile flights in Exercises 23-40 are to be treated as ideal unless stated otherwise. All launch angles are assumed to be measured from the horizontal. All projectiles are assumed to be launched from the origin over a horizontal surface unless stated otherwise. For some exercises, a calculator may be helpful.

23. Travel time A projectile is fired at a speed of 840 m/sec at an angle of 60°. How long will it take to get 21 km downrange?

24. Range and height versus speed

- a. Show that doubling a projectile's initial speed at a given launch angle multiplies its range by 4.
- b. By about what percentage should you increase the initial speed to double the height and range?
- 25. Flight time and height A projectile is fired with an initial speed of 500 m/sec at an angle of elevation of 45° .
 - a. When and how far away will the projectile strike?
 - **b.** How high overhead will the projectile be when it is 5 km downrange?
 - c. What is the greatest height reached by the projectile?
- **26. Throwing a baseball** A baseball is thrown from the stands 32 ft above the field at an angle of 30° up from the horizontal. When and how far away will the ball strike the ground if its initial speed is 32 ft/sec?
- **27. Firing golf balls** A spring gun at ground level fires a golf ball at an angle of 45°. The ball lands 10 m away.
 - a. What was the ball's initial speed?
 - b. For the same initial speed, find the two firing angles that make the range 6 m.
- **28. Beaming electrons** An electron in a cathode-ray tube (CRT) is beamed horizontally at a speed of 5×10^6 m/sec toward the face of the tube 40 cm away. About how far will the electron drop before it hits?
- 29. Equal-range firing angles What two angles of elevation will enable a projectile to reach a target 16 km downrange on the same level as the gun if the projectile's initial speed is 400 m/sec?
- **30. Finding muzzle speed** Find the muzzle speed of a gun whose maximum range is 24.5 km.
- 31. Verify the results given in the text (following Example 4) for the maximum height, flight time, and range for ideal projectile motion.
- **32.** Colliding marbles The accompanying figure shows an experiment with two marbles. Marble A was launched toward marble B with launch angle α and initial speed v_0 . At the same instant, marble B was released to fall from rest at R tan α units directly above a spot R units downrange from A. The marbles were found to collide regardless of the value of v_0 . Was this mere coincidence, or must this happen? Give reasons for your answer.



33. Firing from (x_0, y_0) Derive the equations

$$x = x_0 + (v_0 \cos \alpha)t,$$

$$y = y_0 + (v_0 \sin \alpha)t - \frac{1}{2}gt^2$$

(see Equation (7) in the text) by solving the following initial value problem for a vector \mathbf{r} in the plane.

Differential equation: $\frac{d^2\mathbf{r}}{dt^2} = -g\mathbf{j}$

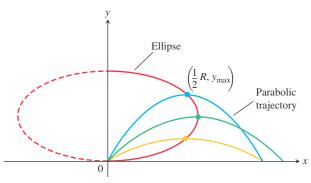
Initial conditions:

$$\mathbf{r}(0) = x_0 \mathbf{i} + y_0 \mathbf{j}$$
$$\frac{d\mathbf{r}}{dt}(0) = (v_0 \cos \alpha) \mathbf{i} + (v_0 \sin \alpha) \mathbf{j}$$

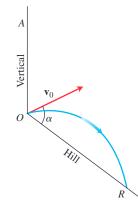
34. Where trajectories crest For a projectile fired from the ground at launch angle α with initial speed v_0 , consider α as a variable and v_0 as a fixed constant. For each α , $0 < \alpha < \pi/2$, we obtain a parabolic trajectory as shown in the accompanying figure. Show that the points in the plane that give the maximum heights of these parabolic trajectories all lie on the ellipse

$$x^{2} + 4\left(y - \frac{{v_{0}}^{2}}{4g}\right)^{2} = \frac{{v_{0}}^{4}}{4g^{2}},$$

where $x \ge 0$.

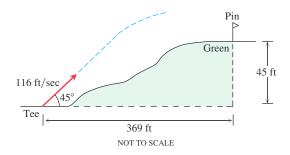


- **35. Launching downhill** An ideal projectile is launched straight down an inclined plane as shown in the accompanying figure.
 - **a.** Show that the greatest downhill range is achieved when the initial velocity vector bisects angle *AOR*.
 - **b.** If the projectile were fired uphill instead of down, what launch angle would maximize its range? Give reasons for your answer.



36. Elevated green A golf ball is hit with an initial speed of 116 ft/sec at an angle of elevation of 45° from the tee to a green

that is elevated 45 ft above the tee as shown in the diagram. Assuming that the pin, 369 ft downrange, does not get in the way, where will the ball land in relation to the pin?

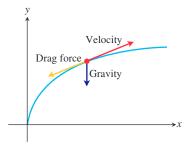


- **37. Volleyball** A volleyball is hit when it is 4 ft above the ground and 12 ft from a 6-ft-high net. It leaves the point of impact with an initial velocity of 35 ft/sec at an angle of 27° and slips by the opposing team untouched.
 - a. Find a vector equation for the path of the volleyball.
 - **b.** How high does the volleyball go, and when does it reach maximum height?
 - c. Find its range and flight time.
 - **d.** When is the volleyball 7 ft above the ground? How far (ground distance) is the volleyball from where it will land?
 - e. Suppose that the net is raised to 8 ft. Does this change things? Explain.
- **38.** Shot put In Moscow in 1987, Natalya Lisovskaya set a women's world record by putting an 8 lb 13 oz shot 73 ft 10 in. Assuming that she launched the shot at a 40° angle to the horizontal from 6.5 ft above the ground, what was the shot's initial speed?
- **39.** A child throws a ball with an initial speed of 60 ft/sec at an angle of elevation of 60° toward a tall building that is 25 ft from the child. If the child's hand is 5 ft from the ground, show that the ball hits the building, and find the height above the ground of the point where the ball hits the building.
- **40. Hitting a baseball under a wind gust** A baseball is hit when it is 2.5 ft above the ground. It leaves the bat with an initial velocity of 145 ft/sec at a launch angle of 23°. At the instant the ball is hit, an instantaneous gust of wind blows against the ball, adding a component of -14i(ft/sec) to the ball's initial velocity. A 15-ft-high fence lies 300 ft from home plate in the direction of the flight.
 - a. Find a vector equation for the path of the baseball.
 - **b.** How high does the baseball go, and when does it reach maximum height?
 - **c.** Find the range and flight time of the baseball, assuming that the ball is not caught.
 - **d.** When is the baseball 20 ft high? How far (ground distance) is the baseball from home plate at that height?
 - e. Has the batter hit a home run? Explain.

Projectile Motion with Linear Drag

The main force affecting the motion of a projectile, other than gravity, is air resistance. This slowing down force is **drag force**, and it acts in a direction *opposite* to the velocity of the projectile (see accompanying figure). For projectiles moving through the air at relatively low speeds,

however, the drag force is (very nearly) proportional to the speed (to the first power) and so is called **linear**.



41. Linear drag Derive the equations

$$x = \frac{v_0}{k} (1 - e^{-kt}) \cos \alpha$$
$$y = \frac{v_0}{k} (1 - e^{-kt}) (\sin \alpha) + \frac{g}{k^2} (1 - kt - e^{-kt})$$

by solving the following initial value problem for a vector \mathbf{r} in the plane.

Differential equation: $\frac{d^2 \mathbf{r}}{dt^2} =$ Initial conditions: $\mathbf{r}(0) =$

$$\frac{d^2 \mathbf{r}}{dt^2} = -g\mathbf{j} - k\mathbf{v} = -g\mathbf{j} - k\frac{d\mathbf{r}}{dt}$$
$$\mathbf{r}(0) = \mathbf{0}$$
$$\frac{d\mathbf{r}}{dt}\Big|_{t=0} = \mathbf{v}_0 = (v_0 \cos \alpha)\mathbf{i} + (v_0 \sin \alpha)\mathbf{j}$$

The **drag coefficient** k is a positive constant representing resistance due to air density, v_0 and α are the projectile's initial speed and launch angle, and g is the acceleration of gravity.

- **42. Hitting a baseball with linear drag** Consider the baseball problem in Example 5 when there is linear drag (see Exercise 41). Assume a drag coefficient k = 0.12, but no gust of wind.
 - a. From Exercise 41, find a vector form for the path of the baseball.
 - **b.** How high does the baseball go, and when does it reach maximum height?
 - c. Find the range and flight time of the baseball.
 - **d.** When is the baseball 30 ft high? How far (ground distance) is the baseball from home plate at that height?
 - **e.** A 10-ft-high outfield fence is 340 ft from home plate in the direction of the flight of the baseball. The outfielder can jump and catch any ball up to 11 ft off the ground to stop it from going over the fence. Has the batter hit a home run?

Theory and Examples

- 43. Establish the following properties of integrable vector functions.
 - a. The Constant Scalar Multiple Rule:

$$\int_{a}^{b} k\mathbf{r}(t) dt = k \int_{a}^{b} \mathbf{r}(t) dt \quad (\text{any scalar } k)$$

The Rule for Negatives,

$$\int_a^b (-\mathbf{r}(t)) dt = -\int_a^b \mathbf{r}(t) dt,$$

is obtained by taking k = -1.

b. The Sum and Difference Rules:

$$\int_{a}^{b} (\mathbf{r}_{1}(t) \pm \mathbf{r}_{2}(t)) dt = \int_{a}^{b} \mathbf{r}_{1}(t) dt \pm \int_{a}^{b} \mathbf{r}_{2}(t) dt$$

c. The Constant Vector Multiple Rules:

a

$$\int_{a}^{b} \mathbf{C} \cdot \mathbf{r}(t) dt = \mathbf{C} \cdot \int_{a}^{b} \mathbf{r}(t) dt \quad (\text{any constant vector } \mathbf{C})$$
nd

$$\int_{a}^{b} \mathbf{C} \times \mathbf{r}(t) dt = \mathbf{C} \times \int_{a}^{b} \mathbf{r}(t) dt \quad (\text{any constant vector } \mathbf{C})$$

- **44.** Products of scalar and vector functions Suppose that the scalar function u(t) and the vector function $\mathbf{r}(t)$ are both defined for $a \le t \le b$.
 - **a.** Show that $u\mathbf{r}$ is continuous on [a, b] if u and \mathbf{r} are continuous on [a, b].
 - **b.** If *u* and **r** are both differentiable on [*a*, *b*], show that *u***r** is differentiable on [*a*, *b*] and that

$$\frac{d}{dt}(u\mathbf{r}) = u\frac{d\mathbf{r}}{dt} + \frac{du}{dt}\mathbf{r}$$

45. Antiderivatives of vector functions

- **a.** Use Corollary 2 of the Mean Value Theorem for scalar functions to show that if two vector functions $\mathbf{R}_1(t)$ and $\mathbf{R}_2(t)$ have identical derivatives on an interval *I*, then the functions differ by a constant vector value throughout *I*.
- **b.** Use the result in part (a) to show that if $\mathbf{R}(t)$ is any antiderivative of $\mathbf{r}(t)$ on *I*, then any other antiderivative of \mathbf{r} on *I* equals $\mathbf{R}(t) + \mathbf{C}$ for some constant vector \mathbf{C} .
- **46. The Fundamental Theorem of Calculus** The Fundamental Theorem of Calculus for scalar functions of a real variable holds for vector functions of a real variable as well. Prove this by using the theorem for scalar functions to show first that if a vector function $\mathbf{r}(t)$ is continuous for $a \le t \le b$, then

$$\frac{d}{dt}\int_{a}^{t}\mathbf{r}(\tau)\,d\tau\,=\,\mathbf{r}(t)$$

at every point *t* of (a, b). Then use the conclusion in part (b) of Exercise 45 to show that if **R** is any antiderivative of **r** on [a, b], then

$$\int_{a}^{b} \mathbf{r}(t) dt = \mathbf{R}(b) - \mathbf{R}(a).$$

- 47. Hitting a baseball with linear drag under a wind gust Consider again the baseball problem in Example 5. This time assume a drag coefficient of 0.08 and an instantaneous gust of wind that adds a component of -17.6i (ft/sec) to the initial velocity at the instant the baseball is hit.
 - **a.** Find a vector equation for the path of the baseball.
 - **b.** How high does the baseball go, and when does it reach maximum height?
 - c. Find the range and flight time of the baseball.
 - **d.** When is the baseball 35 ft high? How far (ground distance) is the baseball from home plate at that height?
 - e. A 20-ft-high outfield fence is 380 ft from home plate in the direction of the flight of the baseball. Has the batter hit a home run? If "yes," what change in the horizontal component of the ball's initial velocity would have kept the ball in the park? If "no," what change would have allowed it to be a home run?
- **48. Height versus time** Show that a projectile attains three-quarters of its maximum height in half the time it takes to reach the maximum height.