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DEFINITION The indefinite integral of r with respect to t is the set of all anti-
derivatives of r, denoted by

∫ t dtr( ) .

 47. Differentiable vector functions are continuous Show that if 
= + +t f t g t h tr i j k( ) ( ) ( ) ( ) is differentiable at =t t ,0  then it 

is continuous at t0 as well.

 48. Constant Function Rule Prove that if u is the vector function 
with the constant value C, then =d dtu 0.

COMPUTER EXPLORATIONS
Use a CAS to perform the following steps in Exercises 49–52.

 a. Plot the space curve traced out by the position vector r.

 b. Find the components of the velocity vector d dtr .

 c. Evaluate d dtr  at the given point t0 and determine the equa-
tion of the tangent line to the curve at tr( ).0

 d. Plot the tangent line together with the curve over the given 
interval.

 49. ( ) ( )= − + + +t t t t t t t tr i j k( ) sin cos cos sin ,2

π π≤ ≤ =t t0 6 , 3 20

 50. = + + − ≤ ≤ =−t t e e t tr i j k( ) 2 , 2 3, 1t t
0

 51. π( ) ( )( )= + + + ≤ ≤t t t t tr i j k( ) sin 2 ln 1 , 0 4 , 
π=t 40

 52. ( ) ( )( )= + + + +t t t tr i j k( ) ln 2 arctan 3 1  ,2 2  
− ≤ ≤ =t t3 5, 30

In Exercises 53 and 54, you will explore graphically the behavior of 
the helix

( ) ( )= + +t at at btr i j k( ) cos sin

as you change the values of the constants a and b. Use a CAS to per-
form the steps in each exercise.

 53. Set =b 1. Plot the helix tr( ) together with the tangent line  
to the curve at π=t 3 2 for =a 1, 2, 4, and 6 over the inter-
val π≤ ≤t0 4 . Describe in your own words what happens to 
the graph of the helix and the position of the tangent line as a 
increases through these positive values.

 54. Set =a 1. Plot the helix tr( ) together with the tangent line to the 
curve at π=t 3 2 for =b 1 4, 1 2, 2, and 4 over the interval 

π≤ ≤t0 4 . Describe in your own words what happens to the  
graph of the helix and the position of the tangent line as b increases 
through these positive values.

In this section we investigate integrals of vector functions and their application to motion 
along a path in space or in the plane.

13.2 Integrals of Vector Functions; Projectile Motion

Integrals of Vector Functions

A differentiable vector function tR( ) is an antiderivative of a vector function tr( ) on an 
interval I if =d dtR r at each point of I. If R is an antiderivative of r on I, it can be 
shown, working one component at a time, that every antiderivative of r on I has the form 
+R C for some constant vector C (Exercise 45). The set of all antiderivatives of r on I is 

the indefinite integral of r on I.

The usual arithmetic rules for indefinite integrals apply.

EXAMPLE 1  To integrate a vector function, we integrate each of its components.

 ∫ ∫ ∫ ∫( ) ( ) ( )( )( )+ − = + −t t dt t dt dt t dti j k i j kcos 2 cos 2  (1)

 ( ) ( )( )= + + + − +t C t C t Ci j ksin 1 2
2

3  (2)

 ( )= + − +t t ti j k Csin 2     = + −C C C Ci j k1 2 3



770 Chapter 13 Vector-Valued Functions and Motion in Space

As in the integration of scalar functions, we recommend that you skip the steps in Equa­
tions (1) and (2) and go directly to the final form. Find an antiderivative for each component 
and add a constant vector at the end. 

DEFINITION If the components of = + +t f t g t h tr i j k( ) ( ) ( ) ( )  are integra­
ble over [ ]a b, , then so is r, and the definite integral of r from a to b is

∫ ∫ ∫ ∫( ) ( ) ( )= + +t dt f t dt g t dt h t dtr i j k( ) ( ) ( ) ( ) .
a

b

a

b

a

b

a

b

EXAMPLE 2  As in Example 1, we integrate each component.

∫ ∫ ∫ ∫

π π
π π

( ) ( ) ( )( )( )

[ ]] [ ] [

+ − = + −

=











+










−











= − + − − −

= −

π π π π

π π π

t t dt t dt dt t dt

t t t

i j k i j k

i j k

i j k

j k

cos 2 cos 2

sin  

0 0 0 0

0 0 0 0

0 0

2

0

2 2

2  

The Fundamental Theorem of Calculus for continuous vector functions says that

∫ = 

= −t dt t b ar R R R( ) ( ) ( ) ( ),

a

b

a

b

where R is any antiderivative of r, so that ′ =t tR r( ) ( ) (Exercise 46). Notice that an anti­
derivative of a vector function is also a vector function, whereas a definite integral of a 
vector function is a single constant vector.

EXAMPLE 3  Suppose we do not know the path of a hang glider, but only its accel­
eration vector ( ) ( )= − − +t t ta i j k( ) 3 cos 3 sin 2 . We also know that initially (at time 
=t 0) the glider departed from the point ( )4, 0, 0  with velocity =v j(0) 3 . Find the glid­

er’s position as a function of t.

Solution Our goal is to find tr( ) knowing

( ) ( )= = − − +

= = + +

d
dt

t ta r i j k

v j r i j k

The differential equation: 3 cos 3 sin 2

The initial conditions: (0) 3 and (0) 4 0 0 .

2

2

Integrating both sides of the differential equation with respect to t gives

( ) ( )= − + + +t t t tv i j k C( ) 3 sin 3 cos 2 .1

We use =v j(0) 3  to find C :1

( ) ( )= − + + +

= +

=

j i j k C

j j C

C

3 3 sin 0 3 cos 0 (0)

3 3

0.

1

1

1

The glider’s velocity as a function of time is

( ) ( )= = − + +d
dt

t t t tr v i j k( ) 3 sin 3 cos 2 .

Definite integrals of vector functions are best defined in terms of components. The 
definition is consistent with how we compute limits and derivatives of vector functions.
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FIGURE 13.9 The path of the hang 
glider in Example 3. Although the path 
spirals around the z-axis, it is not a helix.

z

x y

(4, 0, 0)

Integrating both sides of this last differential equation gives

( ) ( )= + + +t t t tr i j k C( ) 3 cos 3 sin .2
2

We then use the initial condition =r i(0) 4  to find C :2

( ) ( ) ( )

( ) ( )

= + + +

= + + +

=

i i j k C

i i j k C

C i

4 3 cos 0 3 sin 0 0

4 3 0 0

.

2
2

2

2

The glider’s position as a function of t is

( ) ( )= + + +t t t tr i j k( ) 1 3 cos 3 sin .2

This is the path of the glider shown in Figure 13.9. Although the path resembles that of a 
helix due to its spiraling nature around the z-axis, it is not a helix because of the way it is 
rising. (We say more about this in Section 13.5.) 

The Vector and Parametric Equations for Ideal Projectile Motion

A classic example of integrating vector functions is the derivation of the equations for the 
motion of a projectile. In physics, projectile motion describes how an object fired at some 
angle from an initial position, and acted upon by only the force of gravity, moves in a verti-
cal coordinate plane. In the classic example, we ignore the effects of any frictional drag on 
the object, which may vary with its speed and altitude, and also the fact that the force of 
gravity changes slightly with the projectile’s changing height. In addition, we ignore the 
long-distance effects of Earth turning beneath the projectile, such as in a rocket launch or 
the firing of a projectile from a cannon. Ignoring these effects gives us a reasonable 
approximation of the motion in most cases.

To derive equations for projectile motion, we assume that the projectile behaves like a 
particle moving in a vertical coordinate plane and that the only force acting on the projec-
tile during its flight is the constant force of gravity, which always points straight down. The 
magnitude of the gravitational acceleration g is approximately 9.8 m sec 2  at sea level, or 
32 ft sec .2  We assume that the projectile is launched from the origin at time =t 0 into the 
first quadrant with an initial velocity v 0 (Figure 13.10). If v 0 makes an angle α with the 
horizontal, then

α α( ) ( )= +v v i v jcos sin .0 0 0

If we use the simpler notation υ0 for the initial speed v ,0  then

 υ α υ α( ) ( )= +v i jcos sin .0 0 0  (3)

The projectile’s initial position is

 = + =r i j0 0 0.0  (4)

Newton’s second law of motion says that the force acting on the projectile is equal to 
the projectile’s mass m times its acceleration, or ( )m d dtr2 2 , if r is the projectile’s position 
vector and t is time. If the force is solely the gravitational force −mgj, then

= − = −m d
dt

mg d
dt

gr j r jand ,
2

2

2

2

where g is the acceleration due to gravity. We find r as a function of t by solving the fol-
lowing initial value problem.

= −

= = =

d
dt

g

d
dt

t

r j

r r r v

Differential equation:

Initial conditions: and when  0

2

2

0 0

FIGURE 13.10 (a) Position, velocity, 
acceleration, and launch angle at =t 0. 
(b) Position, velocity, and acceleration at 
a later time t.
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Ideal Projectile Motion Equation

 υ α υ α( )( ) ( )= + −t t gtr i jcos sin 1
2

.0 0
2  (5)

The first integration gives

= − +d
dt

gtr j v( ) .0

A second integration gives

= − + +gt tr j v r1
2

.2
0 0

Substituting the values of v 0 and r0 from Equations (3) and (4) gives

  
gt t tr j i j 01

2
cos sin .

tv

2
0 0

0

υ α υ α( ) ( )= − + + +

Collecting terms, we obtain the following.

Equation (5) is the vector equation of the path for ideal projectile motion. The angle α 
is the projectile’s launch angle (firing angle, angle of elevation), and υ ,0  as we said 
before, is the projectile’s initial speed. The components of r give the parametric equations

 υ α υ α( ) ( )= = −x t y t gtcos and sin 1
2

,0 0
2  (6)

where x is the distance downrange and y is the height of the projectile at time ≥t 0.

EXAMPLE 4  A projectile is fired from the origin over horizontal ground at an initial 
speed of 500 m sec and a launch angle of °60 . Where will the projectile be 10  sec later?

Solution We use Equation (5) with υ α= = ° =g500, 60 , 9.8,0  and =t 10 to find 
the projectile’s components 10 sec after firing.

υ α υ α( )
( ) ( )

( ) ( )

( ) ( ) ( ) ( )( )

= + −

= +





 −









≈ +

t t gtr i j

i j

i j

cos sin 1
2

500 1
2

10 500 3
2

10 1
2

9.8 100

2500 3840

0 0
2

Ten seconds after firing, the projectile is about 3840 m above ground and 2500 m down-
range from the origin. 

Ideal projectiles move along parabolas, as we now deduce from Equations (6). If we 
substitute υ α( )=t x cos0  from the first equation into the second, we obtain the Cartesian 
coordinate equation

υ α
α( )= −







 +y

g
x x

2 cos
tan .

0
2 2

2

This equation has the form = +y ax bx,2  so its graph is a parabola.
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If we fire our ideal projectile from the point ( )x y,0 0  instead of the origin (Figure 13.11), 
the position vector for the path of motion is

 υ α υ α( )( )( ) ( )= + + + −x t y t gtr i jcos sin 1
2

,0 0 0 0
2  (7)

as you are asked to show in Exercise 33.

Height, Flight Time, and Range for Ideal Projectile Motion
For ideal projectile motion when an object is launched from the origin over a 
horizontal surface with initial speed υ0 and launch angle α:

Maximum height:
υ α( )

=y
g

sin
2max

0
2

Flight time:
υ α

=t
g

2 sin0

Range:
υ

α=R
g

sin 20
2

FIGURE 13.11 The path of a projectile 
fired from ( )x y,0 0  with an initial velocity  
v 0 at an angle of α degrees with the  
horizontal.

0
x

y

a

v0

(x0, y0)

A projectile reaches its highest point when its vertical velocity component is zero. 
When fired over horizontal ground, the projectile lands when its vertical component equals 
zero in Equation (5), and the range R is the distance from the origin to the point of impact. 
We summarize the results here, which you are asked to verify in Exercise 31.

EXAMPLE 5  A baseball is hit when it is 3  ft above the ground. It leaves the bat with 
initial speed of 152 ft sec, making an angle of °20  with the horizontal. At the instant the 
ball is hit, an instantaneous gust of wind blows in the horizontal direction directly opposite 
the direction the ball is taking toward the outfield, adding a component of ( )− i8.8 ft sec  to 
the ball’s initial velocity ( )=8.8 ft sec 6 mph .

 (a) Find a vector equation (position vector) for the path of the baseball.

 (b) How high does the baseball go, and when does it reach maximum height?

 (c) Assuming that the ball is not caught, find its range and flight time.

Solution 

 (a) Using Equation (3) and accounting for the gust of wind, the initial velocity of the 
baseball is

υ α υ α( ) ( )

( ) ( )

( ) ( )

( )

= + −

= ° + ° −

= ° − + °

v i j i

i j i

i j

cos sin 8.8

152 cos 20 152 sin 20 8.8

152 cos 20 8.8 152 sin 20 .

0 0 0

The initial position is = +r i j0 3 .0  Integration of = −d dt gr j2 2  gives

= − +d
dt

gtr j v( ) .0

Projectile Motion with Wind Gusts

The next example shows how to account for another force acting on a projectile due to a 
gust of wind. We assume that the path of the baseball in Example 5 lies in a vertical plane.
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Integrating Vector-Valued Functions
Evaluate the integrals in Exercises 1–10.

 1. ∫ [ ]( )+ + +t t dti j k7 13

0

1

 2. ∫ ( )( )− + +





t t
t

dti j k6 6 3 4
21

2

 3. ∫ ( ) ( )[ ]( )+ + +
π

π

−
t t t dti j ksin 1 cos sec 2

4

4

 4. ∫ ( ) ( ) ( )[ ]+ +
π

t t t t t dti j ksec tan tan 2 sin cos
0

3

 5. ∫ +
−

+



t t t
dti j k1 1

5
1
21

4

 6. ∫ −
+
+









t t
dti k2

1
3

12 20

1

 7. ∫ [ ]+ +−te e dti j kt t

0

1
2

 8. ∫ [ ]+ +te e t dti j klnt t

1

ln 3

 9. ∫ [ ]− +
π

t t t dti j kcos sin 2 sin 2

0

2

 10. ∫ [ ]+ −
π

t t t t dti j ksec tan sin2

0

4

EXERCISES 13.2 

A second integration gives

= − + +gt tr j v r1
2

.2
0 0

Substituting the values of v 0 and r0 into the last equation gives the position vector of 
the baseball.

( ) ( )

( ) ( )( )

= − + +

= − + ° − + ° +

= ° − + + ° −

gt t

t t t

t t t

r j v r

j i j j

i j

1
2
16 152 cos 20 8.8 152 sin 20 3

152 cos 20 8.8 3 152 sin 20 16 .

2
0 0

2

2

 (b) The baseball reaches its highest point when the vertical component of velocity is zero, or

= ° − =dy
dt

t152 sin 20 32 0.

Solving for t we find

=
°
≈t

152 sin 20
32

1.62 sec.

Substituting this time into the vertical component for r gives the maximum height

( )( ) ( )= + ° − ≈y 3 152 sin 20 1.62 16 1.62 45.2 ft.max
2

That is, the maximum height of the baseball is about 45.2  ft, reached about 1.6  sec 
after leaving the bat.

 (c) To find when the baseball lands, we set the vertical component for r equal to 0 and 
solve for t:

( )

( )

+ ° − =

+ − =

t t

t t

3 152 sin 20 16 0

3 51.99 16 0.

2

2

The solution values are about =t 3.3 sec and = −t 0.06 sec. Substituting the positive 
time into the horizontal component for r, we find the range

( )( )= ° − ≈R 152 cos 20 8.8 3.3 442 ft.

Thus, the horizontal range is about 442  ft, and the flight time is about 3.3  sec. 

In Exercises 41 and 42, we consider projectile motion when there is air resistance 
slowing down the flight.
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Initial Value Problems
Solve the initial value problems in Exercises 11–20 for r as a vector 
function of t.

 11. = − − −

= + +

d
dt

t t tr i j k

r i j k

Differential equation:

Initial condition: (0) 2 3

 12. ( )( )= + −

=

d
dt

t t tr i j

r j

Differential equation: 180 180 16

Initial condition: (0) 100

2

 13. ( )= + + +
+

=

−d
dt

t e
t

r i j k

r k

Differential equation: 3
2

1 1
1

Initial condition: (0)

t1 2

 14. ( )= + + +

= +

d
dt

t t t tr i j k

r i j

Differential equation: 4 2

Initial condition: (0)

3 2

 15. 

π π( )( )( ) ( )= + − − < <

= − +

d
dt

t t t tr i j k

r i j k

Differential equation:

tan cos 1
2

sec 2 ,
4 4

Initial condition: (0) 3 2

 16. 

( ) ( )( )=
+

− +
−

+ +
+

<

= − +

d
dt

t
t

t
t

t
t

tr i j k

r i j k

Differential equation:

2
1

2
4
3

, 2

Initial condition: (0)

2

2 2

2

 17. = −

=

= +
=

d
dt

d
dt

r k

r k

r i j

Differential equation: 32

Initial conditions: (0) 100  and

8 8
t

2

2

0

 18. ( )= − + +

= + +

=
=

d
dt

d
dt

r i j k

r i j k

r 0

Differential equation:

Initial conditions: (0) 10 10 10  and

t

2

2

0

 19. = − +

= + +

= − +

−

=

d
dt

e e e

d
dt

r i j k

r i j k

r i j

Differential equation: 4

Initial conditions: (0) 3 2  and

4

t t t

t

2

2
2

0

 20. 

( ) ( ) ( )= − +

= −

=
=

d
dt

t t t t

d
dt

r i j k

r i k

r i

Differential equation:

sin cos 4 sin cos

Initial conditions: (0)  and

t

2

2

0

Motion Along a Straight Line

 21. At time =t 0, a particle is located at the point ( )1, 2, 3 . It travels 
in a straight line to the point ( )4,1, 4 , has speed 2 at ( )1, 2, 3 , and 
has constant acceleration − +i j k3 . Find an equation for the 
position vector tr( ) of the particle at time t.

 22. A particle traveling in a straight line is located at the point 
( )−1, 1, 2  and has speed 2 at time =t 0. The particle moves 
toward the point ( )3, 0, 3  with constant acceleration + +i j k2 . 
Find its position vector tr( ) at time t.

Projectile Motion
Projectile flights in Exercises 23–40 are to be treated as ideal unless 
stated otherwise. All launch angles are assumed to be measured from 
the horizontal. All projectiles are assumed to be launched from the ori-
gin over a horizontal surface unless stated otherwise. For some exer-
cises, a calculator may be helpful.

 23. Travel time A projectile is fired at a speed of 840 m sec at an 
angle of °60 . How long will it take to get 21 km downrange?

 24. Range and height versus speed 

 a. Show that doubling a projectile’s initial speed at a given 
launch angle multiplies its range by 4.

 b. By about what percentage should you increase the initial 
speed to double the height and range?

 25. Flight time and height A projectile is fired with an initial speed 
of 500 m sec at an angle of elevation of °45 .

 a. When and how far away will the projectile strike?

 b. How high overhead will the projectile be when it is 5 km 
downrange?

 c. What is the greatest height reached by the projectile?

 26. Throwing a baseball A baseball is thrown from the stands 32  ft 
above the field at an angle of °30  up from the horizontal. When 
and how far away will the ball strike the ground if its initial speed 
is 32 ft sec?

 27. Firing golf balls A spring gun at ground level fires a golf ball at 
an angle of °45 . The ball lands 10 m away.

 a. What was the ball’s initial speed?

 b. For the same initial speed, find the two firing angles that make 
the range 6 m.

 28. Beaming electrons An electron in a cathode-ray tube (CRT) 
is beamed horizontally at a speed of ×5 10 m sec6  toward the 
face of the tube 40 cm away. About how far will the electron drop 
before it hits?

 29. Equal-range firing angles What two angles of elevation will 
enable a projectile to reach a target 16 km downrange on the same 
level as the gun if the projectile’s initial speed is 400 m sec?

 30. Finding muzzle speed Find the muzzle speed of a gun whose 
maximum range is 24.5 km.

 31. Verify the results given in the text (following Example 4) for 
the maximum height, flight time, and range for ideal projectile 
motion.

 32. Colliding marbles The accompanying figure shows an experi-
ment with two marbles. Marble A was launched toward marble B 
with launch angle α and initial speed υ .0  At the same instant, mar-
ble B was released to fall from rest at αR tan  units directly above 
a spot R units downrange from A. The marbles were found to col-
lide regardless of the value of υ .0  Was this mere coincidence, or 
must this happen? Give reasons for your answer.

B

A

R

1
2

a

v0

R tan a
gt2
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 33. Firing from ( )x y,0 0  Derive the equations

υ α

υ α

( )

( )

= +

= + −

x x t

y y t gt

cos ,

sin 1
2

0 0

0 0
2

(see Equation (7) in the text) by solving the following initial value 
problem for a vector r in the plane.

υ α υ α( ) ( )

= −

= +

= +

d
dt

g

x y

d
dt

r j

r i j

r i j

Differential equation:

Initial conditions: (0)

(0) cos sin

2

2

0 0

0 0

 34. Where trajectories crest For a projectile fired from the ground 
at launch angle α with initial speed υ ,0  consider α as a variable 
and υ0  as a fixed constant. For each α α π< <, 0 2, we obtain 
a parabolic trajectory as shown in the accompanying figure. Show 
that the points in the plane that give the maximum heights of these 
parabolic trajectories all lie on the ellipse

υ υ
+ −






 =x y

g g
4

4 4
,2 0

2 2
0

4

2

where ≥x 0.

x

y

0

Ellipse

1
2

Parabolic
trajectory

R, ymaxa             b

 35. Launching downhill An ideal projectile is launched straight 
down an inclined plane as shown in the accompanying figure.

 a. Show that the greatest downhill range is achieved when the 
initial velocity vector bisects angle AOR.

 b. If the projectile were fired uphill instead of down, what 
launch angle would maximize its range? Give reasons for your 
answer.

A

R

V
er
tic

al

O

Hill

v0

a

 36. Elevated green A golf ball is hit with an initial speed of 
116 ft sec at an angle of elevation of °45  from the tee to a green 

that is elevated 45  ft above the tee as shown in the diagram. 
Assuming that the pin, 369  ft downrange, does not get in the way, 
where will the ball land in relation to the pin?

369 ft

Pin

Green

45 ft

NOT TO SCALE

Tee

45°
116 ftsec

 37. Volleyball A volleyball is hit when it is 4  ft above the ground 
and 12  ft from a 6-ft-high net. It leaves the point of impact with 
an initial velocity of 35 ft sec at an angle of °27  and slips by the 
opposing team untouched.

 a. Find a vector equation for the path of the volleyball.

 b. How high does the volleyball go, and when does it reach 
maximum height?

 c. Find its range and flight time.

 d. When is the volleyball 7  ft above the ground? How far 
(ground distance) is the volleyball from where it will land?

 e. Suppose that the net is raised to 8  ft. Does this change things? 
Explain.

 38. Shot put In Moscow in 1987, Natalya Lisovskaya set a women’s 
world record by putting an 8  lb 13  oz shot 73  ft 10  in. Assuming 
that she launched the shot at a °40  angle to the horizontal from 
6.5  ft above the ground, what was the shot’s initial speed?

 39. A child throws a ball with an initial speed of 60 ft sec at an angle 
of elevation of °60  toward a tall building that is 25  ft from the 
child. If the child’s hand is 5  ft from the ground, show that the ball 
hits the building, and find the height above the ground of the point 
where the ball hits the building.

 40. Hitting a baseball under a wind gust A baseball is hit when it 
is 2.5  ft above the ground. It leaves the bat with an initial veloc-
ity of 145 ft sec at a launch angle of °23 . At the instant the ball 
is hit, an instantaneous gust of wind blows against the ball, add-
ing a component of ( )− i14 ft sec  to the ball’s initial velocity. A 
15-ft-high fence lies 300  ft from home plate in the direction of 
the flight.

 a. Find a vector equation for the path of the baseball.

 b. How high does the baseball go, and when does it reach maxi-
mum height?

 c. Find the range and flight time of the baseball, assuming that 
the ball is not caught.

 d. When is the baseball 20  ft high? How far (ground distance)  
is the baseball from home plate at that height?

 e. Has the batter hit a home run? Explain.

Projectile Motion with Linear Drag
The main force affecting the motion of a projectile, other than gravity, 
is air resistance. This slowing down force is drag force, and it acts in 
a direction opposite to the velocity of the projectile (see accompanying 
figure). For projectiles moving through the air at relatively low speeds, 
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however, the drag force is (very nearly) proportional to the speed (to 
the first power) and so is called linear.

y

x

Drag force

Velocity

Gravity

 41. Linear drag Derive the equations
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by solving the following initial value problem for a vector r in 
the plane.

υ α υ α( ) ( )

= − − = − −

=

= = +
=

d
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g k g k d
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d
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r j v j r

r 0
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Differential equation:

Initial conditions: (0)

cos sin
t

2

2

0
0 0 0

The drag coefficient k is a positive constant representing 
resistance due to air density, υ0  and α are the projectile’s initial 
speed and launch angle, and g is the acceleration of gravity.

 42. Hitting a baseball with linear drag Consider the baseball 
problem in Example 5 when there is linear drag (see Exercise 41). 
Assume a drag coefficient =k 0.12, but no gust of wind.

 a. From Exercise 41, find a vector form for the path of the baseball.

 b. How high does the baseball go, and when does it reach maxi-
mum height?

 c. Find the range and flight time of the baseball.

 d. When is the baseball 30  ft high? How far (ground distance) is 
the baseball from home plate at that height?

 e. A 10-ft-high outfield fence is 340  ft from home plate in the 
direction of the flight of the baseball. The outfielder can jump 
and catch any ball up to 11  ft off the ground to stop it from 
going over the fence. Has the batter hit a home run?

Theory and Examples

 43. Establish the following properties of integrable vector functions.

 a. The Constant Scalar Multiple Rule:

∫ ∫ ( )=k t dt k t dt kr r( ) ( ) any scalar 
a

b

a

b

The Rule for Negatives,

∫ ∫( )− = −t dt t dtr r( ) ( ) ,
a

b

a

b

is obtained by taking = −k 1.

 b. The Sum and Difference Rules:

∫ ∫ ∫( )± = ±t t dt t dt t dtr r r r( ) ( ) ( ) ( )
a

b

a

b

a

b

1 2 1 2

 c. The Constant Vector Multiple Rules:

∫ ∫ ( )⋅ = ⋅t dt t dtC r C r C( ) ( ) any constant vector 
a

b

a

b

and

∫ ∫ ( )× = ×t dt t dtC r C r C( ) ( ) any constant vector 
a

b

a

b

 44. Products of scalar and vector functions Suppose that the sca-
lar function u t( ) and the vector function tr( ) are both defined for 
≤ ≤a t b.

 a. Show that ur is continuous on [ ]a b,  if u and r are continuous 
on [ ]a b, .

 b. If u and r are both differentiable on [ ]a b, , show that ur is dif-
ferentiable on [ ]a b,  and that

= +d
dt

u u d
dt

du
dt

r r r( ) .

 45. Antiderivatives of vector functions 

 a. Use Corollary 2 of the Mean Value Theorem for scalar func-
tions to show that if two vector functions tR ( )1  and tR ( )2  
have identical derivatives on an interval I, then the functions 
differ by a constant vector value throughout I.

 b. Use the result in part (a) to show that if tR( ) is any antideriva-
tive of tr( ) on I, then any other antiderivative of r on I equals 

+tR C( )  for some constant vector C.

 46. The Fundamental Theorem of Calculus The Fundamental 
Theorem of Calculus for scalar functions of a real variable holds 
for vector functions of a real variable as well. Prove this by using 
the theorem for scalar functions to show first that if a vector func-
tion tr( ) is continuous for ≤ ≤a t b, then

∫ τ τ =d
dt

d tr r( ) ( )
a

t

at every point t of ( )a b, . Then use the conclusion in part (b) of 
Exercise 45 to show that if R is any antiderivative of r on [ ]a b, ,  
then

∫ = −t dt b ar R R( ) ( ) ( ).
a

b

 47. Hitting a baseball with linear drag under a wind gust  
Consider again the baseball problem in Example 5. This time 
assume a drag coefficient of 0.08 and an instantaneous gust of 
wind that adds a component of ( )− i17.6 ft sec  to the initial veloc-
ity at the instant the baseball is hit.

 a. Find a vector equation for the path of the baseball.

 b. How high does the baseball go, and when does it reach maxi-
mum height?

 c. Find the range and flight time of the baseball.

 d. When is the baseball 35  ft high? How far (ground distance) is 
the baseball from home plate at that height?

 e. A 20-ft-high outfield fence is 380  ft from home plate in the 
direction of the flight of the baseball. Has the batter hit a home 
run? If “yes,” what change in the horizontal component of the 
ball’s initial velocity would have kept the ball in the park? If 
“no,” what change would have allowed it to be a home run?

 48. Height versus time Show that a projectile attains three-quarters 
of its maximum height in half the time it takes to reach the maxi-
mum height.


