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OVERVIEW In this chapter we introduce the calculus of vector-valued functions. The 
domains of these functions are sets of real numbers, as before, but their ranges consist of 
vectors instead of scalars. When a vector-valued function changes, the change can occur in 
both magnitude and direction, so the derivative is itself a vector. The integral of a vector-
valued function is also a vector. We use the calculus of these functions to describe the paths 
and motions of objects moving in a plane or in space, so their velocities and accelerations 
are given by vectors.

Vector-Valued Functions 
and Motion in Space

13

13.1 Curves in Space and Their Tangents

When a particle moves through space during a time interval I, we think of the particle’s 
coordinates as functions defined on I:

 = = = ∈x f t y g t z h t t I( ), ( ), ( ), . (1)

The points ( ) = ∈x y z f t g t h t t I, , ( ( ), ( ), ( )), , make up the curve in space that we call 
the particle’s path. The equations and interval in Equation (1) parametrize the curve.

A curve in space can also be represented in vector form. The vector

 = = + +
 

t OP f t g t h tr i j k( ) ( ) ( ) ( )  (2)

from the origin to the particle’s position P f t g t h t( ( ), ( ), ( )) at time t is the particle’s position 
vector (Figure 13.1). The functions f, g, and h are the component functions (or compo-
nents) of the position vector. We think of the particle’s path as the curve traced by r during 
the time interval I. Figure 13.2 displays several space curves generated by a computer 
graphing program.

Equation (2) defines r as a vector function of the real variable t on the interval I. More 
generally, a vector-valued function or vector function on a domain set D is a rule that 
assigns a vector in space to each element in D. For now, the domains will be intervals of 
real numbers, and the graph of the function represents a curve in space. Vector functions on 
a domain in the plane or in space give rise to “vector fields,” which are important to the 
study of fluid flows, gravitational fields, and electromagnetic phenomena. We investigate 
vector fields and their applications in Chapter 16.

Real-valued functions are often called scalar functions to distinguish them from  
vector functions. The components of r in Equation (2) are scalar functions of t. The domain 
of a vector-valued function is the common domain of its components.

FIGURE 13.1 The position vector 
=
 
OPr  of a particle moving through 

space is a function of time.
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EXAMPLE 1  Graph the vector function

( ) ( )= + +t t t tr i j k( ) cos sin .

Solution This vector function tr( ) is defined for all real values of t. The curve traced by 
r winds around the circular cylinder + =x y 12 2  (Figure 13.3). The curve lies on the 
cylinder because the i- and j-components of r, being the x- and y-coordinates of the tip of r, 
satisfy the cylinder’s equation:

( ) ( )+ = + =x y t tcos sin 1.2 2 2 2

The curve rises as the k-component =z t  increases. Each time t increases by π2 , the 
curve completes one turn around the cylinder. The curve is called a helix (from an ancient 
Greek word for “spiral”). The equations

= = =x t y t z tcos , sin ,

parametrize the helix. The domain is the largest set of points t for which all three equations 
are defined, or −∞ < < ∞t  for this example. Figure 13.4 shows more helices. 

FIGURE 13.2 Space curves are defined by the position vectors tr( ).
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FIGURE 13.3 The helix 
( ) ( )= + +t t t tr i j k( ) cos sin  

(Example 1).
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Limits and Continuity

The way we define limits of vector-valued functions is similar to the way we define limits 
of real-valued functions.

FIGURE 13.4 Helices spiral upward around a cylinder, like coiled springs.
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If = + +L L LL i j k,1 2 3  then it can be shown that =
→

tr Llim ( )
t t0

 precisely when

= = =
→ → →

f t L g t L h t Llim ( ) , lim ( ) , and lim ( ) .
t t t t t t

1 2 3
0 0 0

We omit the proof. The equation

 ( ) ( ) ( )= + +
→ → → →

t f t g t h tr i j klim ( ) lim ( ) lim ( ) lim ( )
t t t t t t t t0 0 0 0

 (3)

provides a practical way to calculate limits of vector functions.

DEFINITION Let = + +t f t g t h tr i j k( ) ( ) ( ) ( )  be a vector function with 
domain D, and let L be a vector. We say that r has limit L as t approaches t0 and 
write

=
→

tr Llim ( )
t t0

if, for every number ε > 0, there exists a corresponding number δ > 0 such that, 
for all ∈t D,

ε δ− < < − <t t tr L( ) whenever 0 .0

DEFINITION A vector function tr( ) is continuous at a point =t t0 in its 
domain if =

→
t tr rlim ( ) ( ).

t t
0

0

 The function is continuous if it is continuous at 

every point in its domain.

To calculate the limit of a vector func-
tion, we find the limit of each component 
scalar function.

EXAMPLE 2  If ( ) ( )= + +t t t tr i j k( ) cos sin , then

π

( ) ( ) ( )= + +

= + +

π π π π→ → → →
t t t tr i j k

i j k

lim ( ) lim cos lim sin lim

2
2

2
2 4

.

t t t t4 4 4 4

We define continuity for vector functions the same way we define continuity for scalar 
functions defined over an interval.

From Equation (3), we see that tr( ) is continuous at =t t0 if and only if each compo-
nent function is continuous there (Exercise 45).

EXAMPLE 3

 (a) All the space curves shown in Figures 13.2 and 13.4 are continuous because their com-
ponent functions are continuous at every value of t in ( )−∞ ∞, .

 (b) The function

( ) ( )  = + +t t t tg i j k( ) cos sin

is discontinuous at every integer, because the greatest integer function  t  is discon-
tinuous at every integer. 

Derivatives and Motion

Suppose that = + +t f t g t h tr i j k( ) ( ) ( ) ( )  is the position vector of a particle moving 
along a curve in space and that f, g, and h are differentiable functions of t. Then the differ-
ence between the particle’s positions at time t and time + ∆t t  is the vector

( )∆ = + ∆ −t t tr r r( )
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(Figure 13.5a). In terms of components,

( )

( ) ( ) ( )[ ] [ ]

( )[ ] ( )[ ] ( )[ ]

∆ = + ∆ −

= + ∆ + + ∆ + + ∆ − + +

= + ∆ − + + ∆ − + + ∆ −

t t t

f t t g t t h t t f t g t h t

f t t f t g t t g t h t t h t

r r r

i j k i j k

i j k

( )

( ) ( ) ( )

( ) ( ) ( ) .

As ∆t approaches zero, three things seem to happen simultaneously. First, Q approaches P 
along the curve. Second, the secant line PQ seems to approach a limiting position tangent 
to the curve at P. Third, the quotient ∆ ∆tr  (Figure 13.5b) approaches the limit

( ) ( )

( )

∆
∆
= + ∆ −

∆





+ + ∆ −

∆






+ + ∆ −
∆







= 





+ 



+ 




∆ → ∆ → ∆ →

∆ →

t
f t t f t

t
g t t g t

t

h t t h t
t

d f
dt

dg
dt

dh
dt

r i j

k

i j k

lim lim
( )

lim
( )

lim ( )

.

t t t

t

0 0 0

0

These observations lead us to the following definition.

FIGURE 13.5 As ∆ →t 0, the point Q 
approaches the point P along the curve C. 
In the limit, the vector 

 
∆PQ t becomes 

the tangent vector ′ tr ( ).
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DEFINITION The vector function = + +t f t g t h tr i j k( ) ( ) ( ) ( )  has a derivative 
(is differentiable) at t if f, g, and h have derivatives at t. The derivative is the 
vector function

( )′ = = + ∆ −
∆

= + +
∆ →

t d
dt

t t t
t

d f
dt

dg
dt

dh
dt

r r r r i j k( ) lim ( ) .
t 0

A vector function r is differentiable if it is differentiable at every point of its 
domain.

FIGURE 13.6 A piecewise smooth 
curve made up of five smooth curves con-
nected end to end in a continuous fashion. 
The curve here is not smooth at the points 
joining the five smooth curves.
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The geometric significance of the definition of derivative is shown in Figure 13.5. The 
points P and Q have position vectors tr( ) and ( )+ ∆t tr , and the vector 

 
PQ is represented 

by ( )+ ∆ −t t tr r( ). For ∆ >t 0, the scalar multiple ( ) ( )( )∆ + ∆ −t t t tr r1 ( )  points 
in the same direction as the vector 

 
PQ. As ∆ →t 0, this vector approaches the vector ′ tr ( ), 

which is a vector tangent to the curve at P, as long as it is different from the zero vector 0 
(Figure 13.5b).

The curve traced by r is smooth if d dtr  is continuous and never 0, that is, if f, g, and 
h have continuous first derivatives that are not simultaneously 0. We require ≠d dtr 0 for 
a smooth curve to make sure the curve has a continuously turning tangent at each point. On 
a smooth curve, there are no sharp corners or cusps.

A curve that is made up of a finite number of smooth curves pieced together in a con-
tinuous fashion is called piecewise smooth (Figure 13.6).

Look once again at Figure 13.5. We drew the figure for ∆t positive, so ∆r points for-
ward, in the direction of the motion. The vector ∆ ∆tr , having the same direction as ∆r, 
points forward too. Had ∆t been negative, ∆r would have pointed backward, against the 
direction of motion. The quotient ∆ ∆tr , however, being a negative scalar multiple of ∆r, 
would once again have pointed forward. No matter how ∆r points, ∆ ∆tr  points forward, 
and we expect the vector = ∆ ∆

∆ →
d dt tr rlim ,

t 0
 when different from 0, to do the same. 

This means that the derivative d dtr , which is the rate of change of position with respect to 
time, always points in the direction of motion. For a smooth curve, d dtr  is never zero; the 
particle does not stop or reverse direction.
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EXAMPLE 4  Find the velocity, speed, and acceleration of a particle whose motion in 
space is given by the position vector = + +t t t tr i j k( ) 2 cos 2 sin 5 cos .2  Sketch the 
velocity vector π( )v 7 4 .

Solution The velocity and acceleration vectors at time t are

= ′ = − + −

= − + −

t t t t t t

t t t

v r i j k

i j k

( ) ( ) 2 sin 2 cos 10 cos sin

2 sin 2 cos 5 sin 2 ,

= ′′ = − − −t t t t ta r i j k( ) ( ) 2 cos 2 sin 10 cos 2 ,

and the speed is

( ) ( ) ( )= − + + − = +t t t t tv( ) 2 sin 2 cos 5 sin 2 4 25 sin 2 .2 2 2 2

When π=t 7 4 , we have

π π π( ) ( ) ( )= + + = − + =v i j k a i j v7
4

2 2 5 , 7
4

2 2 , 7
4

29.

A sketch of the curve of motion, and the velocity vector when π=t 7 4 , can be seen in 
Figure 13.7. 

DEFINITIONS If r is the position vector of a particle moving along a smooth 
curve in space, then

=t d
dt

v r( )

is the particle’s velocity vector. If v is a nonzero vector, then it is tangent to the 
curve, and its direction is the direction of motion. The magnitude of v is the 
particle’s speed, and the derivative = d dta v , when it exists, is the particle’s 
acceleration vector. In summary,

1. Velocity is the derivative of = d
dt

v rposition: .

2. Speed is the magnitude of = vvelocity: Speed .

3. Acceleration is the derivative of = =d
dt

d
dt

a v rvelocity: .
2

2

4. The unit vector v v  is the direction of motion at time t.

FIGURE 13.7 The curve and the 
velocity vector when π=t 7 4 for the 
motion given in Example 4.
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Differentiation Rules

Because the derivatives of vector functions may be computed component by component, 
the rules for differentiating vector functions have the same form as the rules for differenti-
ating scalar functions.

We can express the velocity of a moving particle as the product of its speed and 
direction:

( ) ( )( )= =v v
v

Velocity speed direction .
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We will prove the product rules and the Chain Rule but will leave the rules for constants, 
scalar multiples, sums, and differences as exercises.

Differentiation Rules for Vector Functions
Let u and v be differentiable vector functions of t, C a constant vector, c any sca-
lar, and f any differentiable scalar function.

1. Constant Function Rule: =d
dt

C 0

2. Scalar Multiple Rules:

[ ]

[ ] = ′

= ′ + ′

d
dt

c t c t

d
dt

f t t f t t f t t

u u

u u u

( ) ( )

( )  ( ) ( )  ( ) ( )  ( )

3. Sum Rule: [ ]+ = ′ + ′d
dt

t t t tu v u v( ) ( ) ( ) ( )

4. Difference Rule: [ ]− = ′ − ′d
dt

t t t tu v u v( ) ( ) ( ) ( )

5. Dot Product Rule: [ ]⋅ = ′ ⋅ + ⋅ ′d
dt

t t t t t tu v u v u v( ) ( ) ( ) ( ) ( ) ( )

6. Cross Product Rule: [ ]× = ′ × + × ′d
dt

t t t t t tu v u v u v( ) ( ) ( ) ( ) ( ) ( )

7. Chain Rule: [ ] = ′ ′d
dt

f t f t f tu u( ( )) ( ) ( ( ))

When you use the Cross Product Rule, 
remember to preserve the order of the 
factors. If u comes first on the left side of 
the equation, it must also come first on 
the right, or the signs will be wrong.

Proof of the Dot Product Rule  Suppose that

= + +u t u t u tu i j k( ) ( ) ( )1 2 3

and
υ υ υ= + +t t tv i j k( ) ( ) ( ) .1 2 3

Then

     

υ υ υ

υ υ υ υ υ υ

( )( )⋅ = + +

= ′ + ′ + ′

′ ⋅

+ ′ + ′ + ′

⋅ ′

d
dt

d
dt

u u u

u u u u u u

u v

u v u v

.

1 1 2 2 3 3

1 1 2 2 3 3 1 1 2 2 3 3

 

Proof of the Cross Product Rule  We model the proof after the proof of the Product 
Rule for scalar functions. According to the definition of derivative,

( ) ( )
( )× = + × + − ×

→

d
dt

t h t h t t
h

u v u v u vlim ( ) ( ) .
h 0

To change this fraction into an equivalent one that contains the difference quotients for the 
derivatives of u and v, we subtract and add ( )× +t t hu v( )  in the numerator. Then

( ) ( ) ( ) ( )

( )
( )

( )

( )
( )

( )

( )×

= + × + − × + + × + − ×

= + − × + + × + −





= + − × + + × + −

→

→

→ → → →

d
dt

t h t h t t h t t h t t
h

t h t
h

t h t t h t
h

t h t
h

t h t t h t
h

u v

u v u v u v u v

u u v u v v

u u v u v v

lim ( ) ( ) ( ) ( )

lim ( ) ( ) ( )

lim ( ) lim lim ( ) lim ( ) .

h

h

h h h h

0

0

0 0 0 0
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If r is a differentiable vector function of t and the length of tr( ) is constant, then

 ⋅ =d
dt

r r 0. (4)

As an algebraic convenience, we some-
times write the product of a scalar c and a
vector v as vc instead of cv. This permits 
us, for instance, to write the Chain Rule 
in a familiar form:

=d
dt

d
ds

ds
dt

u u ,

where =s f t( ).

FIGURE 13.8 If a particle moves on 
a sphere in such a way that its position r 
is a differentiable function of time, then 
( )⋅ =d dtr r 0.
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The last of these equalities holds because the limit of the cross product of two vector func-
tions is the cross product of their limits if the latter exist (Exercise 46). As h approaches 
zero, ( )+t hv  approaches tv( ) because v, being differentiable at t, is continuous at t 
(Exercise 47). The two fractions approach the values of d dtu  and d dtv  at t. In short,

( ) ( )( )× = × + ×d
dt

d
dt

d
dt

u v u v u v . 

We will use this observation repeatedly in Section 13.4. The converse is also true (see 
Exercise 41).

Proof of the Chain Rule  Suppose that = + +s a s b s c su i j k( ) ( ) ( ) ( )  is a differen-
tiable vector function of s and that =s f t( ) is a differentiable scalar function of t. Then a, 
b, and c are differentiable functions of t, and the Chain Rule for differentiable real-valued 
functions gives

d
dt

s da
dt

db
dt

dc
dt

da
ds

ds
dt

db
ds

ds
dt

dc
ds

ds
dt

ds
dt

da
ds

db
ds

dc
ds

ds
dt

d
ds

f t f t

u i j k

i j k

i j k

u

u

( )

( )  ( ( )).

( )

[ ] = + +

= + +

= + +

=

= ′ ′ =s f t( ) 

Vector Functions of Constant Length

When we track a particle moving on a sphere centered at the origin (Figure 13.8), the posi-
tion vector has a constant length equal to the radius of the sphere. The velocity vector d dtr ,  
tangent to the path of motion, is tangent to the sphere and hence perpendicular to r. This is 
always the case for a differentiable vector function of constant length: The vector and its 
first derivative are orthogonal. By direct calculation,

t t t c

d
dt

t t

t t t t

t t

r r r

r r

r r r r

r r

( ) ( ) ( )

( ) ( ) 0

( ) ( ) ( ) ( ) 0

2 ( ) ( ) 0.

2 2

[ ]

⋅ = =

⋅ =

′ ⋅ + ⋅ ′ =

′ ⋅ =

=t cr( )  is constant.

Differentiate both sides.

Rule 5 with = =t t tr u v( ) ( ) ( )

Thus the vectors ′ tr ( ) and tr( ) are orthogonal because their dot product is 0. In summary, 
the following holds.
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In Exercises 1–4, find the given limits.

 1. t t ti j klim sin
2

cos 2
3

tan 5
4t

( )( ) ( )+ +



π→

 2. t t ti j klim sin
2

ln 2
t 1

3 π( ) ( )( )+ + +



→−

 3. t
t

t
t

ti j klim 1
ln

1
1

arctan
t 1

2
( )−






 −

−
−







 +











→

 4. 
t

t
t
t

t
t

i j klim
sin tan

sin 2
8
2t 0

2 3( ) ( )+






 −

−
+











→

Motion in the Plane
In Exercises 5–8, tr( ) is the position of a particle in the xy-plane at 
time t. Find an equation in x and y whose graph is the path of the par-
ticle. Then find the particle’s velocity and acceleration vectors at the 
given value of t.

 5. ( )( )= + + − =t t t tr i j( ) 1 1 , 12

 6. =
+

+ = −t t
t t

tr i j( )
1

1 , 1
2

 7. = + =t e e tr i j( ) 2
9

, ln 3t t2

 8. ( ) ( )= + =t t t tr i j( ) cos 2 3 sin 2 , 0

Exercises 9–12 give the position vectors of particles moving along 
various curves in the xy-plane. In each case, find the particle’s velocity 
and acceleration vectors at the stated times and sketch them as vectors 
on the curve.

 9. Motion on the circle + =x y 12 2

π π( ) ( )= + =t t t tr i j( ) sin cos ; 4 and 2

 10. Motion on the circle + =x y 162 2

π π( ) ( )= + =t t t tr i j( ) 4 cos
2

4 sin
2

; and 3 2

 11. Motion on the cycloid = − = −x t t y tsin , 1 cos

π π( ) ( )= − + − =t t t t tr i j( ) sin 1 cos ; and 3 2

 12. Motion on the parabola = +y x 12

( )= + + = −t t t tr i j( ) 1 ; 1, 0, and 12

Motion in Space
In Exercises 13–18, tr( ) is the position of a particle in space at time t. 
Find the particle’s velocity and acceleration vectors. Then find the par-
ticle’s speed and direction of motion at the given value of t. Write the 
particle’s velocity at that time as the product of its speed and direction.

 13. ( )( )= + + − + =t t t t tr i j k( ) 1 1 2 , 12

 14. ( )= + + + =t t t t tr i j k( ) 1
2 3

, 1
2 3

 15. π( ) ( )= + + =t t t t tr i j k( ) 2 cos 3 sin 4 , 2

 16. π( ) ( )= + + =t t t t tr i j k( ) sec tan 4
3

, 6

 17. ( )( )= + + + =t t t t tr i j k( ) 2 ln 1
2

, 12
2

 18. ( ) ( )= + + =−t e t t tr i j k( ) 2 cos 3 2 sin 3 , 0t

In Exercises 19–22, tr( ) is the position of a particle in space at time t. 
Find the angle between the velocity and acceleration vectors at time 
=t 0.

19. ( )= + + +t t t tr i j k( ) 3 1 3 2

 20. =






 + −







t t t tr i j( ) 2

2
2

2
16 2

 21. ( )( )( )= + + + +t t t tr i j k( ) ln 1 arctan 12 2

 22. ( ) ( )= + + − +t t t tr i j k( ) 4
9

1 4
9

1 1
3

3 2 3 2

Tangents to Curves
As mentioned in the text, the tangent line to a smooth curve 
= + +t f t g t h tr i j k( ) ( ) ( ) ( )  at =t t0 is the line that passes through 

the point f t g t h t( ( ), ( ), ( ))0 0 0  parallel to tv( ),0  the curve’s velocity vec-
tor at t .0  In Exercises 23–26, find parametric equations for the line that 
is tangent to the given curve at the given parameter value =t t .0

 23. ( ) ( )= + − + =t t t t e tr i j k( ) sin cos , 0t2
0

 24. ( )= + − + =t t t t tr i j k( ) 2 1 , 22 3
0

 25. = + −
+

+ =t t t
t

t t tr i j k( ) ln 1
2

ln , 10

 26. π( ) ( ) ( )= + + =t t t t tr i j k( ) cos sin sin 2 ,
20

In Exercises 27–30, find the value(s) of t so that the tangent line to the 
given curve contains the given point.

 27. ( )( ) ( )= + + + − − −t t t tr i j k( ) 1 2 3 ; 8, 2, 12

 28. ( ) ( )= + + −t t tr i j k( ) 3 2
3

; 0, 3, 8 33 2

 29. ( )= + − −t t t tr i j k( ) 2 ; 0, 4, 42 2

 30. ( ) ( )= − + + − −t t t tr i j k( ) ln ; 2, 5, 32

In Exercises 31–36, tr( ) is the position of a particle in space at time t. 
Match each position function with one of the graphs A–F.

 31. ( ) ( )= + +t t t t t tr i j k( ) cos sin

 32. ( ) ( ) ( )= + +t t t tr i j k( ) cos sin sin 2

33. ( )= + + +t t t tr i j k( ) 12 2 4

 34. ( ) ( )= + +t t t tr i j k( ) ln sin
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 35. ( ) ( )= + +t t t tr i j k( ) cos sin

 36. ( )( ) ( )= + +
+

t t t t t t
t

r i j k( ) sin cos
12

x

y

z

A.  

x

y

z

B.

x

y

z

C.  D.

x y

z

E.

x

y

z

 F.

z

x

y

Theory and Examples

 37. Motion along a circle Each of the following equations in parts 
(a)–(e) describes the motion of a particle having the same path, 
namely the unit circle + =x y 1.2 2  Although the path of each 
particle in parts (a)–(e) is the same, the behavior, or “dynamics,” 
of each particle is different. For each particle, answer the follow-
ing questions.

 i) Does the particle have constant speed? If so, what is its con-
stant speed?

 ii) Is the particle’s acceleration vector always orthogonal to its 
velocity vector?

 iii) Does the particle move clockwise or counterclockwise 
around the circle?

 iv) Is the particle initially located at the point ( )1, 0 ?

 a. ( ) ( )= + ≥t t t tr i j( ) cos sin , 0

 b. = + ≥t t t tr i j( ) cos (2 ) sin (2 ) , 0

 c. π π( ) ( )= − + − ≥t t t tr i j( ) cos 2 sin 2 , 0

 d. ( ) ( )= − ≥t t t tr i j( ) cos sin , 0

 e. = + ≥t t t tr i j( ) cos ( ) sin ( ) , 02 2

 38. Motion along a circle Show that the vector-valued function

( ) ( )
( )= + +

+ − + + +

t

t t

r i j k

i j i j k

( ) 2 2

cos 1
2

1
2

sin 1
3

1
3

1
3

describes the motion of a particle moving in the circle of 
radius 1 centered at the point ( )2, 2,1  and lying in the plane 
+ − =x y z2 2.

 39. Motion along a parabola A particle moves along the top of the 
parabola =y x22  from left to right at a constant speed of 5 units 
per second. Find the velocity of the particle as it moves through 
the point ( )2, 2 .

 40. Motion along a cycloid A particle moves in the xy-plane in 
such a way that its position at time t is

( ) ( )= − + −t t t tr i j( ) sin 1 cos .

 a. Graph tr( ). The resulting curve is a cycloid.

 b. Find the maximum and minimum values of v  and a .  
(Hint: Find the extreme values of v 2 and a 2 first, and take 
square roots later.)

 41. Let r be a differentiable vector function of t. Show that if 
( )⋅ =d dtr r 0 for all t, then r  is constant.

 42. Derivatives of triple scalar products 

 a. Show that if u, v, and w are differentiable vector functions of 
t, then 

( )⋅ × = ⋅ × + ⋅ × + ⋅ ×d
dt

d
dt

d
dt

d
dt

u v w u v w u v w u v w .

 b. Show that

( ) ( )⋅ × = ⋅ ×d
dt

d
dt

d
dt

d
dt

d
dt

r r r r r r .
2

2

3

3

(Hint: Differentiate on the left and look for vectors whose prod-
ucts are zero.)

 43. Prove the two Scalar Multiple Rules for vector functions.

 44. Prove the Sum and Difference Rules for vector functions.

 45. Component test for continuity at a point Show that the vector 
function r defined by = + +t f t g t h tr i j k( ) ( ) ( ) ( )  is continuous 
at =t t0 if and only if f, g, and h are continuous at t .0

 46. Limits of cross products of vector functions Suppose that 
= + + = + +t f t f t f t t g t g t g tr i j k r i j k( ) ( ) ( ) ( ) , ( ) ( ) ( ) ( ) ,1 1 2 3 2 1 2 3  
=

→
tr Alim ( ) ,

t t
1

0

 and =
→

tr Blim ( ) .
t t

2
0

 Use the determinant formula 

for cross products and the Limit Product Rule for scalar functions 
to show that

( )× = ×
→

t tr r A Blim ( ) ( ) .
t t

1 2
0

T
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DEFINITION The indefinite integral of r with respect to t is the set of all anti-
derivatives of r, denoted by

∫ t dtr( ) .

 47. Differentiable vector functions are continuous Show that if 
= + +t f t g t h tr i j k( ) ( ) ( ) ( ) is differentiable at =t t ,0  then it 

is continuous at t0 as well.

 48. Constant Function Rule Prove that if u is the vector function 
with the constant value C, then =d dtu 0.

COMPUTER EXPLORATIONS
Use a CAS to perform the following steps in Exercises 49–52.

 a. Plot the space curve traced out by the position vector r.

 b. Find the components of the velocity vector d dtr .

 c. Evaluate d dtr  at the given point t0 and determine the equa-
tion of the tangent line to the curve at tr( ).0

 d. Plot the tangent line together with the curve over the given 
interval.

 49. ( ) ( )= − + + +t t t t t t t tr i j k( ) sin cos cos sin ,2

π π≤ ≤ =t t0 6 , 3 20

 50. = + + − ≤ ≤ =−t t e e t tr i j k( ) 2 , 2 3, 1t t
0

 51. π( ) ( )( )= + + + ≤ ≤t t t t tr i j k( ) sin 2 ln 1 , 0 4 , 
π=t 40

 52. ( ) ( )( )= + + + +t t t tr i j k( ) ln 2 arctan 3 1  ,2 2  
− ≤ ≤ =t t3 5, 30

In Exercises 53 and 54, you will explore graphically the behavior of 
the helix

( ) ( )= + +t at at btr i j k( ) cos sin

as you change the values of the constants a and b. Use a CAS to per-
form the steps in each exercise.

 53. Set =b 1. Plot the helix tr( ) together with the tangent line  
to the curve at π=t 3 2 for =a 1, 2, 4, and 6 over the inter-
val π≤ ≤t0 4 . Describe in your own words what happens to 
the graph of the helix and the position of the tangent line as a 
increases through these positive values.

 54. Set =a 1. Plot the helix tr( ) together with the tangent line to the 
curve at π=t 3 2 for =b 1 4, 1 2, 2, and 4 over the interval 

π≤ ≤t0 4 . Describe in your own words what happens to the  
graph of the helix and the position of the tangent line as b increases 
through these positive values.

In this section we investigate integrals of vector functions and their application to motion 
along a path in space or in the plane.

13.2 Integrals of Vector Functions; Projectile Motion

Integrals of Vector Functions

A differentiable vector function tR( ) is an antiderivative of a vector function tr( ) on an 
interval I if =d dtR r at each point of I. If R is an antiderivative of r on I, it can be 
shown, working one component at a time, that every antiderivative of r on I has the form 
+R C for some constant vector C (Exercise 45). The set of all antiderivatives of r on I is 

the indefinite integral of r on I.

The usual arithmetic rules for indefinite integrals apply.

EXAMPLE 1  To integrate a vector function, we integrate each of its components.

 ∫ ∫ ∫ ∫( ) ( ) ( )( )( )+ − = + −t t dt t dt dt t dti j k i j kcos 2 cos 2  (1)

 ( ) ( )( )= + + + − +t C t C t Ci j ksin 1 2
2

3  (2)

 ( )= + − +t t ti j k Csin 2     = + −C C C Ci j k1 2 3


