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78. Hidden lines in computer graphics Here is another typical passes through the plate. What portion of the line segment is
problem in computer graphics. Your eye is at (4, 0, 0). You are hidden from your view by the plate? (This is an exercise in finding
looking at a triangular plate whose vertices are at (1, 0, 1), (1, 1, 0), intersections of lines and planes.)

and (-2, 2, 2). The line segment from (1, 0, 0) to (0, 2, 2)
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FIGURE 12.45 A cylinder and
generating curve.
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FIGURE 12.46 Every point of the cyl-
inder in Example 1 has coordinates of the
form (x,, xZ, 2).

Up to now, we have studied two special types of surfaces: spheres and planes. In this
section, we extend our inventory to include a variety of cylinders and quadric surfaces.
Quadric surfaces are surfaces defined by second-degree equations in x, y, and z. Spheres
are quadric surfaces, but there are others of equal interest that will be needed in
Chapters 14-16.

Cylinders

Suppose we are given a plane in space that contains a curve, and in addition we are given a
line that is not parallel to this plane. A cylinder is a surface that is generated by moving a
line that is parallel to the given line along the curve, while keeping it parallel to the given
line. The curve is called a generating curve for the cylinder (Figure 12.45 illustrates this
when the given plane is the yz-plane and the given line is the x-axis). In solid geometry,
where cylinder means circular cylinder, the generating curves are circles, but now we
allow generating curves of any kind. The cylinder in our first example is generated by a
parabola.

EXAMPLE 1 Find an equation for the cylinder made by the lines parallel to the z-axis
that pass through the parabola y = x2, z = 0 (Figure 12.46).

Solution The point P (x,, x3, 0) lies on the parabola y = x?2 in the xy-plane. Then, for
any value of z, the point Q(x,, xZ, z) lies on the cylinder because it lies on the line
X = x4,y = x} through P, parallel to the z-axis. Conversely, any point Q(x,, X3, z)
whose y-coordinate is the square of its x-coordinate lies on the cylinder because it lies on
the line x = x,, y = x} through P, parallel to the z-axis (Figure 12.46).

Regardless of the value of z, therefore, the points on the surface are the points whose coor-
dinates satisfy the equation y = x2.This makes y = x?2 an equation for the cylinder. ]

As Example 1 suggests, any curve f(x, y) = c in the xy-plane generates a cylinder
parallel to the z-axis whose equation is also f(x, y) = c¢. For instance, the equation
x2 + y? = 1 corresponds to the circular cylinder made by the lines parallel to the z-axis
that pass through the circle x> + y2 = 1in the xy-plane.

In a similar way, any curve g(x, z) = cin the xz-plane generates a cylinder parallel to
the y-axis whose space equation is also g(x, z) = c. Any curve h(y, z) = c generates a
cylinder parallel to the x-axis whose space equation is also 2(y, z) = c¢. The axis of a cyl-
inder need not be parallel to a coordinate axis, however.

Quadric Surfaces

A quadric surface is the graph in space of a second-degree equation in x, y, and z. We first
focus on quadric surfaces given by the equation

Ax? + By> + Cz> + Dz = E,

where A, B, C, D, and E are constants. The basic quadric surfaces are ellipsoids,
paraboloids, elliptical cones, and hyperboloids. Spheres are special cases of ellipsoids.
We present a few examples illustrating how to sketch a quadric surface, and then we give a
summary table of graphs of the basic types.
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EXAMPLE 2 The ellipsoid

x2 yz 72 B

a_2 + b_2 + C_2 =1
(Figure 12.47) cuts the coordinate axes at (£a, 0, 0), (0, +b, 0), and (0, 0, £=c). It lies
within the rectangular box defined by the inequalities | x| < a,|y| < b, and |z] < c¢. The
surface is symmetric with respect to each of the coordinate planes because each variable in
the defining equation is squared.

Elliptical cross-section
in the plane z = 7,

2

2
. X Y
The ellipse = + <=1
P a*>  b?
in the xy-plane
\
e\ '
X
The ellipse )
x_2+z_71 Theellipsey—2+z—§:l
a2 2 b c

. in the yz-pl
in the xz-plane tn the yz-plane

2 2 2
FIGURE 12.47 The ellipsoid x_z + i—z + Z—z = 1 in Example 2 has elliptical cross-sections in each of the
a c

three coordinate planes.

The curves in which the three coordinate planes cut the surface are ellipses. For
example,

—+==1 when z = 0.

The curve cut from the surface by the plane z = z,, |z, < ¢, is the ellipse
2 2
2 - nt 5 2 2
a (1_(10/0) ) b (1_(Zo/c) )
If any two of the semiaxes a, b, and ¢ are equal, the surface is an ellipsoid of revolution.
If all three are equal, the surface is a sphere. ]

= 1.

EXAMPLE 3 The hyperbolic paraboloid

2 2
yo_xt _z
b2 a2 c>0

has symmetry with respect to the planes x = 0 and y = 0 (Figure 12.48). The cross-
sections in these planes are

x = 0: the parabolaz = —y?2. (1)

y = 0: the parabola z = ——x?2. 2)
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In the plane x = 0, the parabola opens upward from the origin. The parabola in the plane
y = 0 opens downward.

The parabola z = l% y2in the yz-plane
4 2
Part of the hyperbola Z—Z -

in the plane z = ¢

Saddle
point

2 2
Part of the hyperbola x_2 5= 1
a

The parabolaz = — 5 x < in the planez = —c¢

in the xz-plane

FIGURE 1248 The hyperbolic paraboloid (y2/b2) — (x%/a?) = z/c, ¢ > 0. The cross-sections in planes perpendicular to the
z-axis above and below the xy-plane are hyperbolas. The cross-sections in planes perpendicular to the other axes are parabolas.

If we cut the surface by a plane z = z, > 0, the cross-section is a hyperbola,

with its focal axis parallel to the y-axis and its vertices on the parabola in Equation (1). If
Z, 1s negative, the focal axis is parallel to the x-axis and the vertices lie on the parabola in
Equation (2).

Near the origin, the surface is shaped like a saddle or mountain pass. To a person trav-
eling along the surface in the yz-plane the origin looks like a minimum. To a person travel-
ing the xz-plane the origin looks like a maximum. Such a point is called a saddle point of
a surface. We will say more about saddle points in Section 14.7. |

Table 12.1 shows graphs of the six basic types of quadric surfaces. Each surface shown
is symmetric with respect to the z-axis, but other coordinate axes can serve as well (with
appropriate changes to the equation).

General Quadric Surfaces

The quadric surfaces we have considered have symmetries relative to the x-, y-, or z-axes.
The general equation of second degree in three variables x, y, z is

Ax? 4+ By? + Cz> + Dxy + Exz + Fyz + Gz + Hy+ Iz + J = 0,

where A, B, C, D, E, F, G, H, I, and J are constants. This equation leads to surfaces similar
to those in Table 12.1, but in general these surfaces might be translated and rotated relative
to the x-, y-, and z-axes. Terms of the type Gx, Hy, or Iz in the above formula lead to trans-
lations, which can be seen by a process of completing the squares.

EXAMPLE 4 Identify the surface given by the equation
x2 4+ y? 4422 = 2x+4y+1=0.
Solution We complete the squares to simplify the expression:

X4y 4422 =2+ Ay + 1= =D =14+ (y+2)° — 4 + 422 4+ 1
=(x—D"+(y+2)°+4z2 — 4.
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TABLE 12.1 Graphs of Quadric Surfaces
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We can rewrite the original equation as

753

(x—=D> (y+2° 2
= =1.
4 * 4 * 1
This is the equation of an ellipsoid whose three semiaxes have lengths 2, 2, and 1 and
which is centered at the point (1, —2, 0), as shown in Figure 12.49. [ |
The ellipse ())%2)2 + ZTZ =1 z

in the plane x = 1

—1)2
The ellipse %

in the plane y = —2

FIGURE 12.49

2
+E =
1

7

The ellipse

x

=D 0+2°_
T T3 =1

in the plane z = 0 (This ellipse is a circle.)

An ellipsoid centered at the point (1, —2, 0).

Matching Equations with Surfaces
In Exercises 1-12, match the equation with the surface it defines. Also,
identify each surface by type (paraboloid, ellipsoid, etc.). The surfaces
are labeled (a)—(1).

1
3
5
7
9

11

Lx2 4 y2 4472 =10
. 9y2 + 22 =16
Lxo= y? =72

Lx2 4222 =38

Lx = z2 —y?

Lx2 4472 = g2

Z

x/,/!/!y

Z

¢ &
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10.
12.

L 22 4 4y? —4x? =

y2 4 22 = x2

x = —y? — 22

L2+ x2—y2 =1

7 = —4x? —y?

9x2 + 4y2 + 272 = 36
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Drawing
Sketch the surfaces in Exercises 13-44.

CYLINDERS

13. x2 + y2 =4 14. z = y2 — 1

15. x? + 4z2 =16 16. 4x2 + y? = 36
ELLIPSOIDS

17. 9x2 + y2 + 22 =9 18. 4x2 + 4y + z2 =16

19. 4x2 + 9y2 + 4z = 36 20. 9x2 + 4y2 + 36z% = 36

PARABOLOIDS AND CONES

21. z = x2 + 4y? 22,7 =8 — x2 — y?
23. x = 4 — 4y? — 72 24,y =1 —x2 —z2
25. x2 + y? = z? 26. 4x2 + 9z2 = 9y?

HYPERBOLOIDS
27. x* +y? -2 =1 28y + 727 —x2 =1
29,72 —x? —y2 =1 30. (y2/4) — (x2/4) — 22 =1

HYPERBOLIC PARABOLOIDS

3. y2 — x2 =z 32.x2—yr =z
ASSORTED

33,72 =1+ y2 — x2 34, 4x2 4 4y? = z?
35y = —(x2 + 22) 36. 16x2 + 4y? =1
37.x2 + y2 —z2 = 38.x2+z2 =y

39. x2 +z2 =1 40. 16y2 + 9z2 = 4x?
41. 7 = —(x? + y?) 42, y2 — x2 —z2 =1
43. 4y2 + 72 —4x2 =4 4. x2 + y2 =z

Theory and Examples

45. a. Express the area A of the cross-section cut from the ellipsoid

2 2
2 4+ - + = =1
T
by the plane z = ¢ as a function of c¢. (The area of an ellipse
with semiaxes a and b is wab.)

b. Use slices perpendicular to the z-axis to find the volume of the
ellipsoid in part (a).

c. Now find the volume of the ellipsoid

x 2 2 2
atyptast
Does your formula give the volume of a sphere of radius a if
a=>b=c?

46. The barrel shown here is shaped like an ellipsoid with equal pieces
cut from the ends by planes perpendicular to the z-axis. The cross-
sections perpendicular to the z-axis are circular. The barrel is 2h
units high, its midsection radius is R, and its end radii are both r.
Find a formula for the barrel’s volume. Then check two things.
First, suppose the sides of the barrel are straightened to turn the
barrel into a cylinder of radius R and height 24. Does your formula
give the cylinder’s volume? Second, suppose r = 0 and/7 = R so
the barrel is a sphere. Does your formula give the sphere’s volume?

47. Show that the volume of the segment cut from the paraboloid

x2 y2 z

a? b2

by the plane z = h equals half the segment’s base times its altitude.
48. a. Find the volume of the solid bounded by the hyperboloid

2y 2

a*  b? c?

and the planesz = Oandz = h, h > 0.

b. Express your answer in part (a) in terms of / and the areas A,
and A,, of the regions cut by the hyperboloid from the planes
z=0andz = h.

c. Show that the volume in part (a) is also given by the formula
h
vV = g(A0 +4A, + A,),

where A, is the area of the region cut by the hyperboloid
from the plane z = h/2.

Viewing Surfaces

Plot the surfaces in Exercises 49-52 over the indicated domains. If you

can, rotate the surface into different viewing positions.
49. 7 = y2, 2<x<2, -05<y<2
50.z =1—y% -2<x<2 -2<y<2
5l.z = x>+ y%, -3<x<3 -3<y<3
52.z7 = x? + 2y% over

a -3 <x<3 -3<y<L3
b. -1<x<1, -2<y<3
c. 2<x<2 -2<y<L?2
d -2<x<2 -1<y<1

COMPUTER EXPLORATIONS
Use a CAS to plot the surfaces in Exercises 53-58. Identify the type of
quadric surface from your graph.

2 2 2 2 2 2
53,5 Y = 5. %7 2 _q_ )
9 " 36 25 9 9 16

2 2
55.5x2 = z? — 3y? 56.{—:17%+z

57,5 =2 42



