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 27. Which of the following are always true, and which are not always 
true? Give reasons for your answers.

 a. u u u= ⋅

 b. u u u⋅ =

 c. u 0 0 u 0× = × =

 d. u u 0( )× − =

 e. u v v u× = ×

 f. u v w u v u w( )× + = × + ×

 g. u v v 0( )× ⋅ =

 h. u v w u v w( ) ( )× ⋅ = ⋅ ×

 28. Which of the following are always true, and which are not always 
true? Give reasons for your answers.

 a. u v v u⋅ = ⋅

 b. u v v u( )× = − ×

 c. u v u v( ) ( )− × = − ×

 d. c c c cu v u v u v any number ( )( ) ( ) ( )⋅ = ⋅ = ⋅

 e. c c c cu v u v u v any number ( )( ) ( ) ( )× = × = ×

 f. u u u 2⋅ =

 g. u u u 0( )× ⋅ =

 h. u v u v u v( ) ( )× ⋅ = ⋅ ×

 29. Given nonzero vectors u, v, and w, use dot product and cross 
product notation, as appropriate, to describe the following.

 a. The vector projection of u onto v

 b. A vector orthogonal to u and v

 c. A vector orthogonal to u v×  and w

 d. The volume of the parallelepiped determined by u, v, and w

 e. A vector orthogonal to u v×  and u w×

 f. A vector of length u  in the direction of v

 30. Compute i j j( )× ×  and i j j .( )× ×  What can you conclude 
about the associativity of the cross product?

 31. Let u, v, and w be vectors. Which of the following make sense, 
and which do not? Give reasons for your answers.

 a. u v w( )× ⋅ b. u v w( )× ⋅

 c. u v w( )× × d. u v w( )⋅ ⋅

 32. Cross products of three vectors Show that except in degen-
erate cases, u v w( )× ×  lies in the plane of u and v, whereas 
u v w( )× ×  lies in the plane of v and w. What are the degenerate 
cases?

 33. Cancelation in cross products If u v u w× = ×  and 0u ,≠  
then does v w?=  Give reasons for your answer.

 34. Double cancelation If 0u ≠  and if u v u w× = ×  and 
u v u w,⋅ = ⋅  then does v w?=  Give reasons for your answer.

Area of a Parallelogram
Find the areas of the parallelograms whose vertices are given in 
Exercises 35–40.

 35. A B C D1, 0 , 0, 1 , 1, 0 , 0,  1( ) ( ) ( ) ( )− −

 36. A B C D0, 0 , 7, 3 , 9, 8 , 2, 5( ) ( ) ( ) ( )

 37. ( ) ( ) ( ) ( )−A B C D1, 2 , 2, 0 , 7, 1 , 4, 3

 38. ( ) ( ) ( ) ( )− − −A B C D6, 0 , 1,  4 , 3, 1 , 4, 5

 39. ( ) ( ) ( ) ( )−A B C D0, 0, 0 , 3, 2, 4 , 5, 1, 4 , 2,  1, 0

 40. ( ) ( ) ( ) ( )− −A B C D1, 0,  1 , 1, 7, 2 , 2, 4,  1 , 0, 3, 2

Area of a Triangle
Find the areas of the triangles whose vertices are given in Exer- 
cises 41–47.

 41. ( ) ( ) ( )−A B C0, 0 , 2, 3 , 3, 1

 42. ( ) ( ) ( )− −A B C1,  1 , 3, 3 , 2, 1

 43. ( ) ( ) ( )− − −A B C5, 3 , 1,  2 , 6,  2

 44. ( ) ( ) ( )− − −A B C6, 0 , 10,  5 , 2, 4

 45. ( ) ( ) ( )−A B C1, 0, 0 , 0, 2, 0 , 0, 0,  1

 46. ( ) ( ) ( )− −A B C0, 0, 0 , 1, 1,  1 , 3, 0, 3

 47. ( ) ( ) ( )− −A B C1,  1, 1 , 0, 1, 1 , 1, 0,  1

 48. Find the volume of a parallelepiped with one of its eight vertices 
at A 0, 0, 0( ) and three adjacent vertices at B C1, 2, 0 , 0, 3, 2( ) ( )− , 
and ( )−D 3,  4, 5 .

 49. Triangle area Find a ×2 2 determinant formula for the area of 
the triangle in the xy-plane with vertices at a a0, 0 , ,  ,1 2( )( )  and 
( )b b, 1 2 . Explain your work.

 50. Triangle area Find a concise ×3 3 determinant formula 
that gives the area of a triangle in the xy-plane having vertices 

a a b b,  , ,  ,1 2 1 2( ) ( )  and ( )c c,  .1 2

Volume of a Tetrahedron
Using the methods of Section 6.1, where volume is computed by 
integrating cross-sectional area, it can be shown that the volume of 

a tetrahedron formed by three vectors is equal to 1
6

 the volume of the 

parallelepiped formed by the three vectors. Find the volumes of the 
tetrahedra whose vertices are given in Exercises 51–54.

 51. ( ) ( ) ( ) ( )A B C D0, 0, 0 , 2, 0, 0 , 0, 3, 0 , 0, 0, 4

 52. ( ) ( ) ( ) ( )A B C D0, 0, 0 , 1, 0, 2 , 0, 2, 1 , 3, 4, 0

 53. ( ) ( ) ( ) ( )− − −A B C D1,  1, 0 , 0, 2,  2 , 3, 0, 3 , 0, 4, 4

 54. ( ) ( ) ( ) ( )− − − −A B C D1, 2, 3 , 2, 0, 1 , 1,  3, 2 , 2, 1,  1

In Exercises 55–57, determine whether the given points are coplanar.

 55. ( ) ( ) ( ) ( )− −A B C D1, 1, 1 , 1, 0, 4 , 0, 2, 1 , 2,  2, 3

 56. ( ) ( ) ( ) ( )− − −A B C D0, 0, 4 , 6, 2, 0 , 2,  1, 1 , 3,  4, 3

 57. ( ) ( ) ( ) ( )− − −A B C D0, 1, 2 , 1, 1, 0 , 2, 0,  1 , 1,  1, 1

12.5 Lines and Planes in Space

This section shows how to use scalar and vector products to write equations for lines, line 
segments, and planes in space. We will use these representations throughout the rest of the 
text in studying the calculus of curves and surfaces in space.
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Lines and Line Segments in Space

In the plane, a line is determined by a point and a number giving the slope of the line. In 
space a line is determined by a point and a vector giving the direction of the line.

Suppose that L is a line in space passing through a point ( )P x y z,  , 0 0 0 0  parallel to a 
vector υ υ υ= + +v i j k.1 2 3  Then L is the set of all points ( )P x y z,  ,   for which 

 
P P0  is 

parallel to v (Figure 12.37). Thus, 
 

=P P tv0  for some scalar parameter t. The value of t 
depends on the location of the point P along the line, and the domain of t is ( )−∞ ∞,  . The 
expanded form of the equation 

 
=P P tv0  is

υ υ υ( ) ( ) ( ) ( )− + − + − = + +x x y y z z ti j k i j k ,0 0 0 1 2 3

which can be rewritten as

 υ υ υ( )+ + = + + + + +x y z x y z ti j k i j k i j k .0 0 0 1 2 3  (1)

If tr( ) is the position vector of a point ( )P x y z,  ,   on the line and r0 is the position vec-
tor of the point ( )P x y z,  ,  ,0 0 0 0  then Equation (1) gives the following vector form for the 
equation of a line in space.

Vector Equation for a Line
A vector equation for the line L through , ,P x y z( )0 0 0 0  parallel to a nonzero 
vector v is

 t t tr r v( ) , ,0= + −∞ < < ∞  (2)

where r is the position vector of a point ( )P x y z,  ,   on L and r0 is the position 
vector of ( )P x y z, , 0 0 0 0 .

Equating the corresponding components of the two sides of Equation (1) gives three 
scalar equations involving the parameter t:

υ υ υ= + = + = +x x t y y t z z t, , .0 1 0 2 0 3

These equations give us the standard parametrization of the line for the parameter interval 
−∞ < < ∞t .

Parametric Equations for a Line
The standard parametrization of the line through , ,P x y z( )0 0 0 0  parallel to a 
nonzero vector v i j k1 2 3υ υ υ= + +  is

 υ υ υ= + = + = + −∞ < < ∞x x t y y t z z t t, , , .0 1 0 2 0 3  (3)

EXAMPLE 1  Find parametric equations for the line through 2, 0, 4( )−  parallel to 
= + −v i j k2 4 2  (Figure 12.38).

Solution With ( )P x y z,  , 0 0 0 0  equal to ( )−2, 0, 4  and + +v v vi j k1 2 3  equal to 
+ −i j k2 4 2 , Equations (3) become

= − + = = −x t y t z t2 2 , 4 , 4 2 .

EXAMPLE 2  Find parametric equations for the line through ( )− −P 3, 2,  3  and 
( )−Q 1,  1, 4 .

Solution The vector
 

( )( ) ( ) ( )( )= − − + − − + − − = − +PQ i j k i j k1 3 1 2 4 3 4 3 7

FIGURE 12.37 A point P lies on L 
through P0 parallel to v if and only if 

 
P P0  

is a scalar multiple of v.
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FIGURE 12.38 Selected points and 
parameter values on the line in Example 1. 
The arrows show the direction of  
increasing t.
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is parallel to the line, and Equations (3) with ( ) ( )= − −x y z,  ,  3, 2,  30 0 0  give

= − + = − = − +x t y t z t3 4 , 2 3 , 3 7 .

We could have chosen ( )−Q 1,  1, 4  as the “base point” and written

= + = − − = +x t y t z t1 4 , 1 3 , 4 7 .

These equations serve as well as the first; they simply place you at a different point on the 
line for a given value of t. 

Notice that parametrizations are not unique. Not only can the “base point” change, but 
so can the parameter. The equations = − + = −x t y t3 4 ,   2 3 ,3 3  and = − +z t3 7 3 
also parametrize the line in Example 2.

To parametrize a line segment joining two points, we first parametrize the line through 
the points. We then find the t-values for the endpoints and restrict t to lie in the closed inter-
val bounded by these values. The line equations, together with this added restriction, 
parametrize the segment.

EXAMPLE 3  Parametrize the line segment joining the points ( )− −P 3, 2,  3  and 
( )−Q 1,  1, 4  (Figure 12.39).

Solution We begin with equations for the line through P and Q, taking them, in this case, 
from Example 2:

= − + = − = − +x t y t z t3 4 , 2 3 , 3 7 .

We observe that the point

x y z t t t,  ,  3 4 ,  2 3 , 3 7( )( ) = − + − − +

on the line passes through ( )− −P 3, 2,  3  at =t 0 and ( )−Q 1,  1, 4  at =t 1. We add the 
restriction ≤ ≤t0 1 to parametrize the segment:

= − + = − = − + ≤ ≤x t y t z t t3 4 , 2 3 , 3 7 , 0 1. 

The vector form (Equation (2)) for a line in space is more revealing if we think of a 
line as the path of a particle starting at position ( )P x y z,  , 0 0 0 0  and moving in the direction 
of vector v. Rewriting Equation (2), we have

 
t t

t

r r v

r v v
v

( )

.

0

0

= +

= +
 (4)

In other words, the position of the particle at time t is its initial position plus its distance 
moved ( )×speed time  in the direction v v  of its straight-line motion.

EXAMPLE 4  A helicopter is to fly directly from a helipad at the origin in the direc-
tion of the point ( )1, 1, 1  at a speed of 60 ft sec. What is the position of the helicopter 
after 10 sec?

Solution We place the origin at the starting position (helipad) of the helicopter. Then the 
unit vector

= + +u i j k1
3

1
3

1
3

FIGURE 12.39 Example 3 derives a 
parametrization of line segment PQ. The 
arrow shows the direction of increasing t.
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gives the flight direction of the helicopter. From Equation (4), the position of the helicopter 
at any time t is

( )
( )

( )

= +

= + + +

= + +

t t

t

t

r r u

0 i j k

i j k

( ) speed

(60) 1
3

1
3

1
3

20 3 .

0

When t 10 sec,=

( )= + +

= 〈 〉

r i j k(10) 200 3

200 3,  200 3,  200 3 .

After 10 sec of flight from the origin toward 1, 1, 1( ), the helicopter is located at  
the point 200 3, 200 3, 200 3( ) in space. It has traveled a distance of 

60 ft sec 10 sec 600 ft,( )( ) =  which is the length of the vector r(10). 

The Distance from a Point to a Line in Space

To find the distance from a point S to a line that passes through a point P parallel to a vector 
v, we find the absolute value of the scalar component of 

 
PS in the direction of a vector 

normal to the line (Figure 12.40). In the notation of the figure, the absolute value of the 

scalar component is 
 

θPS sin , which is 

   
PS PSv

v
v

v
sin

.
θ
=

×

FIGURE 12.40 The distance from 
S to the line through P parallel to v is 
PS sin ,
 

θ  where θ is the angle between  
PS  and v.

S

P
v

u

0PS 0  sin u

Distance from a Point S to a Line Through P Parallel to v

 

 
=

×
d

PS v
v

 (5)

EXAMPLE 5  Find the distance from the point ( )S 1, 1, 5  to the line

= + = − =L x t y t z t: 1 , 3 , 2 .

Solution We see from the equations for L that L passes through ( )P 1, 3, 0  parallel to 
= − +v i j k2 . With

 
( ) ( ) ( )= − + − + − = − +PS i j k j k1 1 1 3 5 0 2 5

and

 
PS v

i j k

i j k0 2 5

1 1 2

5 2 ,× = −

−

= + +

Equation (5) gives
 

=
×

= + +
+ +

= =d
PS v

v
1 25 4
1 1 4

30
6

5. 

An Equation for a Plane in Space

A plane in space is determined by knowing a point on the plane and its “tilt” or orientation. 
This “tilt” is defined by specifying a vector that is perpendicular, or normal, to the plane.
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Suppose that plane M passes through a point ( )P x y z,  , 0 0 0 0  and is normal to the nonzero 
vector = + +A B Cn i j k. A vector from P0 to any point P on the plane is orthogonal to n. 
Then M is the set of all points ( )P x y z,  ,   for which 

 
P P0  is orthogonal to n (Figure 12.41). 

Thus, the dot product 
 
⋅ =P Pn 0.0  This equation is equivalent to

( ) ( ) ( )[ ]( )+ + ⋅ − + − + − =A B C x x y y z zi j k i j k 0,0 0 0

so the plane M consists of the points ( )x y z,  ,   satisfying

( ) ( ) ( )− + − + − =A x x B y y C z z 0.0 0 0FIGURE 12.41 The standard equation 
for a plane in space is defined in terms of a 
vector normal to the plane: A point P lies 
in the plane through P0 normal to n if and 
only if 

 
⋅ =P Pn 0.0

n

P0(x0, y0, z0)

Plane M

P(x, y, z)

Equation for a Plane
The plane through P x y z, ,0 0 0 0( ) normal to a nonzero vector A B Cn i j k= + +  
has

:

:

:

P P

A x x B y y C z z

Ax By Cz D

D Ax By Cz

Vector equation n

Component equation

Component equation simplified

  0

  0

    , where

0

0 0 0

0 0 0

( ) ( ) ( )

⋅ =

− + − + − =

+ + =

= + +

 

EXAMPLE 6  Find an equation for the plane through ( )−P 3, 0, 70  perpendicular to 
= + −n i j k5 2 .

Solution The component equation is

( )( )( ) ( )( )− − + − + − − =x y z5 3 2 0 1 7 0.

Simplifying, we obtain

x y z

x y z

5 15 2 7 0

5 2 22.

+ + − + =
+ − = −  

Notice in Example 6 how the components of = + −n i j k5 2  became the coeffi-
cients of x, y, and z in the equation + − = −x y z5 2 22. The vector = + +A B Cn i j k 
is normal to the plane + + =Ax By Cz D.

EXAMPLE 7  Find an equation for the plane through ( ) ( )A B0, 0, 1 ,   2, 0, 0 , and 
( )C 0, 3, 0 .

Solution We find a vector normal to the plane and use it with one of the points (it does 
not matter which) to write an equation for the plane.

The cross product

   
AB AC

i j k

i j k2 0 1

0 3 1

3 2 6× = −

−

= + +

is normal to the plane. We substitute the components of this vector and the coordinates of 
( )A 0, 0, 1  into the component form of the equation to obtain

x y z

x y z

3 0 2 0 6 1 0

3 2 6 6.

( )( ) ( )− + − + − =
+ + =  

Lines of Intersection

Just as lines are parallel if and only if they have the same direction, two planes are parallel 
if and only if their normals are parallel, or = kn n1 2 for some scalar k. Two planes that are 
not parallel intersect in a line.
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FIGURE 12.42 How the line of intersec-
tion of two planes is related to the planes’ 
normal vectors (Example 8).

PLANE 2

PLA
N

E 1

n1 × n2

n2

n1

EXAMPLE 8 Find a vector parallel to the line of intersection of the planes
− − =x y z3 6 2 15 and + − =x y z2 2 5.

Solution The line of intersection of two planes is perpendicular to both planes’ normal 
vectors n1 and n 2 (Figure 12.42) and therefore parallel to ×n n .1 2  Turning this around, 
×n n1 2 is a vector parallel to the planes’ line of intersection. In our case,

n n

i j k

i j k3 6 2

2 1 2

14 2 15 .1 2× = − −

−

= + +

Any nonzero scalar multiple of ×n n1 2 will do as well. 

EXAMPLE 9  Find parametric equations for the line in which the planes 
− − =x y z3 6 2 15 and + − =x y z2 2 5 intersect.

Solution We find a vector parallel to the line and a point on the line and use Equations (3).
Example 8 identifies = + +v i j k14 2 15  as a vector parallel to the line. To find a 

point on the line, we can take any point common to the two planes. Substituting =z 0 in 
the plane equations and solving for x and y simultaneously identifies one of these points as 
( )−3,  1, 0 . The line is

= + = − + =x t y t z t3 14 , 1 2 , 15 .

The choice =z 0 is arbitrary, and we could have chosen =z 1 or = −z 1 just as well. Or
we could have let =x 0 and solved for y and z. The different choices would simply give
different parametrizations of the same line.

Sometimes we want to know where a line and a plane intersect. For example, if we are
looking at a flat plate and a line segment passes through it, we may be interested in know-
ing what portion of the line segment is hidden from our view by the plate. This application
is used in computer graphics (Exercise 78).

EXAMPLE 10  Find the point where the line

= + = − = +x t y t z t8
3

2 , 2 , 1

intersects the plane + + =x y z3 2 6 6.

Solution The point

t t t8
3

2 ,  2 ,  1( )+ − +

lies in the plane if its coordinates satisfy the equation of the plane—that is, if

t t t

t t t
t
t

3 8
3

2 2 2 6 1 6

8 6 4 6 6 6
8 8

1.

( ) ( ) ( )+ + − + + =

+ − + + =
= −
= −

The point of intersection is

x y z,  ,  8
3

2, 2, 1 1 2
3

, 2, 0 .t 1 ( ) ( )( ) = − − ==−  
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The Distance from a Point to a Plane

If P is a point on a plane with a normal n, then the distance from any point S to the plane is 
the length of the vector projection of 

 
PS onto n, as given in the following formula.

FIGURE 12.43 The distance from S to the plane is the 
length of the vector projection of 

 
PS  onto n (Example 11).

(0, 0, 1)

(2, 0, 0)

0

y

x

z

n = 3i + 2j + 6k

Distance from
S to the plane

P(0, 3, 0)

3x + 2y + 6z = 6

S(1, 1, 3)

Distance from a Point S to a Plane Through a Point P with a Normal n

 
 

= ⋅d PS n
n

(6)

EXAMPLE 11  Find the distance from ( )S 1, 1, 3  to the plane + + =x y z3 2 6 6.

Solution We find a point P in the plane and calculate the length of the vector projection 
of 
 
PS onto a vector n normal to the plane (Figure 12.43). The coefficients in the equation 
+ + =x y z3 2 6 6 give

= + +n i j k3 2 6 .

The points on the plane easiest to find from the plane’s equation are the intercepts. If 
we take P to be the y-intercept ( )0, 3, 0 , then

PS i j k i j k

n

1 0 1 3 3 0 2 3 ,

3 2 6 49 7.2 2 2

 
( ) ( ) ( )

( ) ( ) ( )

= − + − + − = − +

= + + = =

Therefore, the distance from S to the plane is

 

( )( )

= ⋅

= − + ⋅ + +

= − + =

d PS n
n

i j k i j k2 3 3
7

2
7

6
7

3
7

4
7

18
7

17
7

.  

Angles Between Planes

The angle between two intersecting planes is defined to be the acute angle between their 
normal vectors (Figure 12.44).

Length of PSprojn

 
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FIGURE 12.44 The angle between two 
planes is obtained from the angle between 
their normals.

n2
n1

u

u

EXAMPLE 12 Find the angle between the planes − − =x y z3 6 2 15 and
+ − =x y z2 2 5.

Solution The vectors

= − − = + −n i j k n i j k3 6 2 , 2 21 2

are normals to the planes. The angle between them is

θ

( )

=
⋅








= ≈

n n
n n

arccos

arccos 4
21

1.38 radians.

1 2

1 2

Lines and Line Segments
Find parametric equations for the lines in Exercises 1–12.

 1. The line through the point ( )− −P 3,  4,  1  parallel to the vector 
+ +i j k

 2. The line through ( )−P 1, 2,  1  and ( )−Q 1, 0, 1

 3. The line through ( )−P 2, 0, 3  and ( )−Q 3, 5,  2

 4. The line through ( )P 1, 2, 0  and ( )−Q 1, 1,  1

 5. The line through the origin parallel to the vector +j k2

 6. The line through the point ( )−3,  2, 1  parallel to the line 
= + = − =x t y t z t1 2 ,   2 ,   3

 7. The line through ( )1, 1, 1  parallel to the z-axis

 8. The line through ( )2, 4, 5  perpendicular to the plane 
+ − =x y z3 7 5 21

 9. The line through ( )−0,  7, 0  perpendicular to the plane 
+ + =x y z2 2 13

 10. The line through ( )2, 3, 0  perpendicular to the vectors 
= + +u i j k2 3  and = + +v i j k3 4 5

 11. The x-axis  12. The z-axis

Find parametrizations for the line segments joining the points in 
Exercises 13–20. Draw coordinate axes and sketch each segment, indi-
cating the direction of increasing t for your parametrization.

 13. ( )( )0, 0, 0 , 1, 1, 3 2  14. ( ) ( )0, 0, 0 , 1, 0, 0

 15. ( ) ( )1, 0, 0 , 1, 1, 0  16. ( ) ( )1, 1, 0 , 1, 1, 1

 17. ( ) ( )−0, 1, 1 , 0,  1, 1  18. ( ) ( )0, 2, 0 , 3, 0, 0

 19. ( ) ( )2, 0, 2 , 0, 2, 0  20. ( ) ( )−1, 0,  1 , 0, 3, 0

Planes
Find equations for the planes in Exercises 21–26.

 21. The plane through ( )−P 0, 2,  10  normal to = − −n i j k3 2

 22. The plane through ( )−1,  1, 3  parallel to the plane

+ + =x y z3 7

 23. The plane through ( ) ( )−1, 1,  1 ,   2, 0, 2 , and ( )−0,  2, 1

 24. The plane through ( ) ( )2, 4, 5 ,   1, 5, 7 , and ( )−1, 6, 8

 25. The plane through ( )P 2, 4, 50  perpendicular to the line

= + = + =x t y t z t5 , 1 3 , 4

 26. The plane through ( )−A 1,  2, 1  perpendicular to the vector from 
the origin to A.

 27. Find the point of intersection of the lines x t2 1,= +   
y t3 2,= +  z t4 3,= +  and x s 2,= +  y s2 4,= +  
z s4 1,= − −  and then find the plane determined by these lines.

 28. Find the point of intersection of the lines x t y t,   2,= = − +  
z t 1,= +  and x s2 2,= +  y s 3,= +  z s5 6,= +  and  
then find the plane determined by these lines.

In Exercises 29 and 30, find the plane containing the intersecting lines.

 29. L x t y t z t t1: 1 , 2 , 1 ;= − + = + = − −∞ < < ∞

L x s y s z s s2: 1 4 , 1 2 , 2 2 ;= − = + = − −∞ < < ∞

 30. L x t y t z t t1: , 3 3 , 2 ;= = − = − − −∞ < < ∞

L x s y s z s s2: 1 , 4 , 1 ;= + = + = − + −∞ < < ∞

 31. Find a plane through ( )−P 2, 1,  10  and perpendicular to the line of 
intersection of the planes + − = + + =x y z x y z2 3,   2 2.

 32. Find a plane through the points ( )P 1, 2, 3 ,1  and ( )P 3, 2, 12  and 
perpendicular to the plane − + =x y z4 2 7.

Distances
In Exercises 33–38, find the distance from the point to the line.

 33. x t y t z t0, 0, 12 ; 4 , 2 , 2( ) = = − =

 34. x t y t z t0, 0, 0 ; 5 3 , 5 4 , 3 5( ) = + = + = − −

 35. x t y t z2, 1, 3 ; 2 2 , 1 6 , 3( ) = + = + =

 36. x t y t z t2, 1,  1 ; 2 , 1 2 , 2( )− = = + =

 37. x t y t z t3,  1, 4 ; 4 , 3 2 , 5 3( )− = − = + = − +

 38. x t y z t1, 4, 3 ; 10 4 , 3, 4( )− = + = − =

In Exercises 39–44, find the distance from the point to the plane.

 39. x y z2,  3, 4 , 2 2 13( )− + + =

 40. x y z0, 0, 0 , 3 2 6 6( ) + + =

 41. y z0, 1, 1 , 4 3 12( ) + = −

EXERCISES 12.5 
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 42. x y z2, 2, 3 , 2 2 4( ) + + =

 43. x y z0,  1, 0 , 2 2 4( )− + + =

 44. x y z1, 0,  1 , 4 4( )− − + + =

 45. Find the distance from the plane + + =x y z2 6 1 to the plane 
+ + =x y z2 6 10.

 46. Find the distance from the line x t y t2 ,   1 ,= + = +  
z t1 2 1 2( ) ( )= − −  to the plane + + =x y z2 6 10.

Angles
In Exercises 47 and 48, find the angles between the planes.

 47. + = + − =x y x y z1, 2 2 2

 48. + − = − + = −x y z x y z5 10, 2 3 1

In Exercises 49 and 50, find the acute angles between the intersecting 
lines.

 49. x t y t z t x t y t z t,   2 ,   and 1 ,   5 ,   2= = = − = − = + =

 50. x t y t z t2 ,   4 2,   1 and= + = + = +
x t y z t3 2,   2,   2 2= − = − = −

In Exercises 51 and 52, find the acute angles between the lines and 
planes.

 51. = − = = + − + =x t y t z t x y z1 ,   3 ,   1 ; 2 3 6

 52. = = + = − − + =x y t z t x y z2,   3 2 ,   1 2 ; 0

Use a calculator to find the acute angles between the planes in 
Exercises 53–56 to the nearest hundredth of a radian.

 53. + + = − − =x y z x y z2 2 2 3, 2 2 5

 54. x y z z xy1, 0 the  -plane( )+ + = =

 55. + − = + + =x y z x y z2 2 3, 2 2

 56. + = − + + =y z x y z4 3 12, 3 2 6 6

Intersecting Lines and Planes
In Exercises 57–60, find the point in which the line meets the plane.

 57. = − = = + − + =x t y t z t x y z1 , 3 , 1 ; 2 3 6

 58. x y t z t x y z2, 3 2 , 2 2 ; 6 3 4 12= = + = − − + − = −

 59. = + = + = + + =x t y t z t x y z1 2 , 1 5 , 3 ; 2

 60. = − + = − = − =x t y z t x z1 3 , 2, 5 ; 2 3 7

Find parametrizations for the lines in which the planes in Exercises 
61–64 intersect.

 61. + + = + =x y z x y1, 2

 62. − − = + − =x y z x y z3 6 2 3, 2 2 2

 63. − + = + − =x y z x y z2 4 2, 2 5

 64. − = − = −x y y z5 2 11, 4 5 17

Given two lines in space, either they are parallel, they intersect, or they 
are skew (lie in parallel planes). In Exercises 65 and 66, determine 
whether the lines, taken two at a time, are parallel, intersect, or are 
skew. If they intersect, find the point of intersection. Otherwise, find 
the distance between the two lines.

 

65.

 

L x t y t z t t

L x s y s z s s

L x r y r z r r

1: 3 2 ,   1 4 ,   2 ;

2: 1 4 ,   1 2 ,   3 4 ;

3: 3 2 ,   2 ,   2 2 ;

= + = − + = − −∞ < < ∞

= + = + = − + −∞ < < ∞

= + = + = − + −∞ < < ∞

 

66.

 

L x t y t z t t

L x s y s z s s

L x r y r z r r

1: 1 2 , 1 , 3 ;

2: 2 , 3 , 1 ;

3: 5 2 , 1 , 8 3 ;

= + = − − = −∞ < < ∞

= − = = + −∞ < < ∞

= + = − = + −∞ < < ∞

T

Theory and Examples

 67. Use Equations (3) to generate a parametrization of the line through 
( )−P 2,  4, 7  parallel to = − +v i j k2 3 .1  Then generate another 

parametrization of the line using the point ( )− −P 2,  2, 12  and the 
vector ( ) ( )= − + −v i j k1 2 3 2 .2

 68. Use the component form to generate an equation for the plane 
through ( )P 4, 1, 51  normal to = − +n i j k2 .1  Then generate 
another equation for the same plane using the point ( )−P 3,  2, 02  
and the normal vector n i j k2 2 2 2 .2 = − + −

 69. Find the points in which the line x t y t z t1 2 , 1 , 3= + = − − =  
meets the coordinate planes. Describe the reasoning behind your 
answer.

 70. Find equations for the line in the plane =z 3 that makes an angle 
of π 6 rad with i and an angle of π 3 rad with j. Describe the rea-
soning behind your answer.

 71. Is the line = − = + = −x t y t z t1 2 ,   2 5 ,   3  parallel to the 
plane + − =x y z2 8? Give reasons for your answer.

 72. How can you tell when two planes + + =A x B y C z D1 1 1 1 and 
+ + =A x B y C z D2 2 2 2 are parallel? Perpendicular? Give rea-

sons for your answer.

 73. Find two different planes whose intersection is the line 
= + = − = +x t y t z t1 ,   2 ,   3 2 . Write equations for each 

plane in the form + + =Ax By Cz D.

 74. Find a plane through the origin that is perpendicular to the plane 
M x y z: 2 3 12+ + = in a right angle. How do you know that 
your plane is perpendicular to M?

 75. The graph of ( ) ( ) ( )+ + =x a y b z c 1 is a plane for any non-
zero numbers a, b, and c. Which planes have an equation of this form?

 76. Suppose L1 and L2 are disjoint (nonintersecting) nonparallel lines. 
Is it possible for a nonzero vector to be perpendicular to both L1 
and L ?2  Give reasons for your answer.

 77. Perspective in computer graphics In computer graphics and 
perspective drawing, we need to represent objects seen by the eye 
in space as images on a two-dimensional plane. Suppose that the 
eye is at ( )E x , 0, 00  as shown here and that we want to represent 
a point ( )P x y z,  , 1 1 1 1  as a point on the yz-plane. We do this by 
projecting P1 onto the plane with a ray from E. The point P1 will be 
portrayed as the point ( )P y z0,  ,  . The problem for us as graphics 
designers is to find y and z given E and P .1

 a. Write a vector equation that holds between 
 
EP  and 

 
EP .1  Use 

the equation to express y and z in terms of x x y,   ,   ,0 1 1  and z .1

 b. Test the formulas obtained for y and z in part (a) by investigat-
ing their behavior at =x 01  and =x x1 0 and by seeing what
happens as → ∞x .0  What do you find?

0 y

z

x

P(0, y, z)

P1(x1, y1, z1)

E(x0, 0, 0)

(x1, y1, 0)
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FIGURE 12.45 A cylinder and 
generating curve.
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2( )

x
y

PA
RABOLA 

0

y = x2

P0(x0, x0
2, 0)

Q0(x0, x0
2, z)

z

 78. Hidden lines in computer graphics Here is another typical 
problem in computer graphics. Your eye is at ( )4, 0, 0 . You are 
looking at a triangular plate whose vertices are at ( ) ( )1, 0, 1 ,   1, 1, 0 ,  
and ( )−2, 2, 2 . The line segment from 1, 0, 0( ) to 0, 2, 2( ) 

passes through the plate. What portion of the line segment is 
hidden from your view by the plate? (This is an exercise in finding 
intersections of lines and planes.)

12.6 Cylinders and Quadric Surfaces

Up to now, we have studied two special types of surfaces: spheres and planes. In this 
section, we extend our inventory to include a variety of cylinders and quadric surfaces. 
Quadric surfaces are surfaces defined by second-degree equations in x, y, and z. Spheres 
are quadric surfaces, but there are others of equal interest that will be needed in 
Chapters 14–16.

Cylinders

Suppose we are given a plane in space that contains a curve, and in addition we are given a 
line that is not parallel to this plane. A cylinder is a surface that is generated by moving a 
line that is parallel to the given line along the curve, while keeping it parallel to the given 
line. The curve is called a generating curve for the cylinder (Figure 12.45 illustrates this 
when the given plane is the yz-plane and the given line is the x-axis). In solid geometry, 
where cylinder means circular cylinder, the generating curves are circles, but now we 
allow generating curves of any kind. The cylinder in our first example is generated by a 
parabola.

EXAMPLE 1 Find an equation for the cylinder made by the lines parallel to the z-axis
that pass through the parabola y x z, 02= = (Figure 12.46).

Solution The point P x x,  , 00 0 0
2( ) lies on the parabola y x 2=  in the xy-plane. Then, for 

any value of z, the point Q x x z,  , 0 0
2( ) lies on the cylinder because it lies on the line 

x x y x,  0 0
2= =  through P0 parallel to the z-axis. Conversely, any point Q x x z,  , 0 0

2( ) 
whose y-coordinate is the square of its x-coordinate lies on the cylinder because it lies on 
the line x x y x,  0 0

2= = through P0 parallel to the z-axis (Figure 12.46).
Regardless of the value of z, therefore, the points on the surface are the points whose coor-

dinates satisfy the equation y x .2=  This makes y x 2=  an equation for the cylinder. 

As Example 1 suggests, any curve f x y c, ( ) =  in the xy-plane generates a cylinder 
parallel to the z-axis whose equation is also f x y c, ( ) = . For instance, the equation 
x y 12 2+ =  corresponds to the circular cylinder made by the lines parallel to the z-axis 
that pass through the circle x y 12 2+ =  in the xy-plane.

In a similar way, any curve g x z c, ( ) =  in the xz-plane generates a cylinder parallel to 
the y-axis whose space equation is also g x z c,  .( ) =  Any curve h y z c, ( ) =  generates a 
cylinder parallel to the x-axis whose space equation is also h y z c,  .( ) =  The axis of a cyl-
inder need not be parallel to a coordinate axis, however.

Quadric Surfaces

A quadric surface is the graph in space of a second-degree equation in x, y, and z. We first 
focus on quadric surfaces given by the equation

Ax By Cz Dz E,2 2 2+ + + =

where A, B, C, D, and E are constants. The basic quadric surfaces are ellipsoids, 
paraboloids, elliptical cones, and hyperboloids. Spheres are special cases of ellipsoids. 
We present a few examples illustrating how to sketch a quadric surface, and then we give a 
summary table of graphs of the basic types.


