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We use the law of cosines to prove Theorem 1, but before doing so, we focus attention 
on the expression u u u1 1 2 2 3 3υ υ υ+ +  in the calculation for .θ  This expression is the sum 
of the products of the corresponding components of the vectors u and v.

FIGURE 12.20 The magnitude of the 
force F  in the direction of vector v is the 
length F cos θ of the projection of F   
onto v.
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12.3 The Dot Product

If a force F is applied to a particle moving along a path, we often need to know the magni-
tude of the force in the direction of motion. If v is parallel to the tangent line to the path at 
the point where F is applied, then we want the magnitude of F in the direction of v. 
Figure 12.20 shows that the scalar quantity we seek is the length F cos ,θ  where θ is the 
angle between the two vectors F and v.

In this section we show how to calculate easily the angle between two vectors directly 
from their components. A key part of the calculation is an expression called the dot product. 
Dot products are also called inner or scalar products because the product results in a 
scalar, not a vector. After investigating the dot product, we apply it to finding the projection 
of one vector onto another (as displayed in Figure 12.20) and to finding the work done by 
a constant force acting through a displacement.

Angle Between Vectors

When two nonzero vectors u and v are placed so their initial points coincide, they form an 
angle θ of measure 0 θ π≤ ≤  (Figure 12.21). If the vectors do not lie along the same 
line, the angle θ is measured in the plane containing both of them. If they do lie along the 
same line, the angle between them is 0 if they point in the same direction and π if they 
point in opposite directions. The angle θ is the angle between u and v. Theorem 1 gives a 
formula to determine this angle.

THEOREM 1—Angle Between Two Vectors
The angle θ between two nonzero vectors u u uu ,  , 1 2 3= 〈 〉 and v ,  , 1 2 3υ υ υ= 〈 〉 
is given by

θ
υ υ υ

=
+ +








u u u
u v

arccos .1 1 2 2 3 3

DEFINITION The dot product u v⋅  (“u dot v”) of vectors u u uu ,  , 1 2 3= 〈 〉 
and v ,  , 1 2 3υ υ υ= 〈 〉 is the scalar

u u uu v .1 1 2 2 3 3υ υ υ⋅ = + +

EXAMPLE 1  We illustrate the definition.

 
(a)

 
1,  2,  1 6, 2,  3 1 6 2 2 1 3

6 4 3 7

( )( ) ( )( ) ( )( )〈 − − 〉 ⋅ 〈− − 〉 = − + − + − −

= − − + = −

 (b) i j k i j k1
2

3 4 2 1
2

4 3 1 1 2 1( ) ( )( ) ( ) ( )( ) ( )( )+ + ⋅ − + = + − + =  

The dot product of a pair of two-dimensional vectors is defined in a similar fashion:

u u u u,   ,   .1 2 1 2 1 1 2 2υ υ υ υ〈 〉 ⋅ 〈 〉 = +

We will see throughout the remainder of this text that the dot product is a key tool for many 
important geometric and physical calculations in space (and the plane).

FIGURE 12.21 The angle between u 
and v given by Theorem 1 lies in the  
interval 0,  .π[ ]
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Proof of Theorem 1 Applying the law of cosines (Equation (8), Section 1.3) to the
triangle in Figure 12.22, we find that

w u v u v

u v u v w

2 cos

2 cos .

2 2 2

2 2 2

θ

θ

= + −

= + −

  Law of cosines

Because w u v,= −  the component form of w is u u u,   ,   .1 1 2 2 3 3υ υ υ〈 − − − 〉  So
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( )

( )

( )

( )

( )

( ) ( )

( ) ( )

= + + = + +

= + + = + +

= − + − + −

= − + − + −

= − + + − + + − +

and

u u uu v w 2 .2 2 2
1 1 2 2 3 3υ υ υ( )+ − = + +

Therefore,

u u u

u u u

u u u

u v u v w

u v

u v

2 cos 2

cos

cos .

2 2 2
1 1 2 2 3 3

1 1 2 2 3 3

1 1 2 2 3 3

θ υ υ υ

θ υ υ υ

θ
υ υ υ

( )= + − = + +

= + +

=
+ +

Thus, for 0 ,θ π≤ ≤  we have θ
υ υ υ

=
+ +








u u u
u v

arccos .1 1 2 2 3 3  

FIGURE 12.22 The parallelogram law 
of addition of vectors gives w u v.= −

u

v

u
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Dot Product and Angles

The angle between two nonzero vectors u and v is θ = ⋅







u v
u v

arccos .

The dot product of two vectors u and v is given by u v u v cos .θ⋅ =

EXAMPLE 2  Find the angle between u i j k2 2= − −  and v i j k6 3 2 .= + +

Solution We use the formula above:

θ ( )

( )( ) ( )( ) ( )( )

( ) ( ) ( )

( ) ( ) ( )

( )( )

⋅ = + − + − = − − = −

= + − + − = =

= + + = =

= ⋅





 =

− ≈ °

u v

u

v

u v
u v

1 6 2 3 2 2 6 6 4 4

1 2 2 9 3

6 3 2 49 7

arccos arccos 4
3 7

1.76 radians or 100.98 .

2 2 2

2 2 2

 

The angle formula applies to two-dimensional vectors as well. Note that the angle θ is 
acute if u v 0⋅ >  and obtuse if u v 0.⋅ <

FIGURE 12.23 The triangle in 
Example 3.

x
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B(3, 5)

C(5, 2)
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1

EXAMPLE 3  Find the angle θ in the triangle ABC determined by the vertices 
A B0, 0 ,   3, 5 ,( ) ( )= =  and C 5, 2( )=  (Figure 12.23).
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Solution The angle θ is the angle between the vectors CA
 

 and CB.
 

 The component forms 
of these two vectors are

CA CB5,  2 and 2, 3 .
   
= 〈− − 〉 = 〈− 〉

First we calculate the dot product and magnitudes of these two vectors.

CA CB

CA

CB

5 2 2 3 4

5 2 29

2 3 13

2 2

2 2

   

 

 

( )( ) ( )( )

( ) ( )

( ) ( )

⋅ = − − + − =

= − + − =

= − + =

Then, applying the angle formula, we have

θ
( )( )

= ⋅







 =











≈ °

   
   CA CB
CA CB

arccos arccos 4
29 13

78.1  or 1.36 radians.  

DEFINITION Vectors u and v are orthogonal if u v 0.⋅ =

EXAMPLE 4  To determine if two vectors are orthogonal, calculate their dot product.

 (a) u 3,  2= 〈 − 〉 and v 4, 6= 〈 〉 are orthogonal because u v 3 4 2 6 0.( )( ) ( )( )⋅ = + − =

 (b) u i j k3 2= − + and v j k2 4= +  are orthogonal because

u v 3 0 2 2 1 4 0.( )( ) ( )( ) ( )( )⋅ = + − + =

 (c) 0 is orthogonal to every vector u because

u u u

u u u

0 u 0, 0, 0 ,  , 

0 ( ) 0 ( ) 0 ( ) 0.
1 2 3

1 2 3( ) ( ) ( )

⋅ = 〈 〉 ⋅ 〈 〉

= + + =  

Properties of the Dot Product
If u, v, and w are any vectors and c is a scalar, then

1. u v v u⋅ = ⋅ 2. c c cu v u v u v( ) ( ) ( )⋅ = ⋅ = ⋅

3. u v w u v u w( )⋅ + = ⋅ + ⋅ 4. u u u 2⋅ =

5. 0 u 0.⋅ =

Orthogonal Vectors

Two nonzero vectors u and v are perpendicular if the angle between them is 2.π  For 
such vectors, we have u v 0⋅ =  because cos 2 0.π( ) =  The converse is also true. If u 
and v are nonzero vectors with u v u v cos 0,θ⋅ = =  then cos 0θ =  and 
θ π= =arccos 0 2. The following definition also allows for one or both of the vec-
tors to be the zero vector.

Dot Product Properties and Vector Projections

The dot product obeys many of the laws that hold for ordinary products of real numbers 
(scalars).
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Proofs of Properties 1 and 3 The properties are easy to prove using the definition.
For instance, here are the proofs of Properties 1 and 3.

1. u u u u u uu v v u1 1 2 2 3 3 1 1 2 2 3 3υ υ υ υ υ υ⋅ = + + = + + = ⋅

3.

 

u u u w w w

u w u w u w

u u w u u w u u w

u u u u w u w u w

u v w

u v u w

,   ,   ,   ,  1 2 3 1 1 2 2 3 3

1 1 1 2 2 2 3 3 3

1 1 1 1 2 2 2 2 3 3 3 3

1 1 2 2 3 3 1 1 2 2 3 3

υ υ υ

υ υ υ
υ υ υ

υ υ υ

( )

( ) ( )

( ) ( )

( )⋅ + = 〈 〉 ⋅ 〈 + + + 〉

= + + + + +
= + + + + +

= + + + + +
= ⋅ + ⋅  

We now return to the problem of projecting one vector onto another, posed in the 
opening to this section. The vector projection of PQu

 
=  onto a nonzero vector PSv

 
=  

(Figure 12.24) is the vector PR
 

 determined by dropping a perpendicular from Q to the line 
PS. The notation for this vector is

“ ”u u vproj the vector projection of   onto  .v ( )

If u represents a force, then uprojv  represents the effective force in the direction of v 
(Figure 12.25).

If the angle θ between u and v is acute, uprojv  has length u cos θ and direction v v  
(Figure 12.26). If θ is obtuse, cos 0θ <  and uprojv  has length u cos θ−  and direction 

v v .−  In both cases,

u u v
v

u v
v

v
v

u v
v

v

proj cos

.

v

2

θ

( )
( )

( )=

= ⋅

= ⋅

u
u v

v
u v

v
cos

cos
θ

θ
= = ⋅

FIGURE 12.24 The vector projection 
of u onto v.
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v

R

FIGURE 12.25 If we pull on the box 
with force u, the effective force moving 
the box forward in the direction v is the 
projection of u onto v.

v

Force = u

projv u

FIGURE 12.26 The length of uprojv  is (a) u cos θ if cos 0θ ≥  and  
(b) u cos θ−  if cos 0.θ <

u

v

(b)

u

v 

(a)

u

u

projv u projv u

Length = 0u 0  cos u Length = −0u 0  cos u 

The vector projection of u onto v is the vector

 u u v
v

v u v
v

v
v

proj .v 2( ) ( )= ⋅ = ⋅  (1)

The scalar component of u in the direction of v is the scalar

 u u v
v

u v
v

cos .θ = ⋅ = ⋅  (2)

The number θu cos  is called the scalar component of u in the direction of v. To 
summarize,
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Note that both the vector projection of u onto v and the scalar component of u in the direc-
tion of v depend only on the direction of the vector v, not on its length. This is because in 
both cases we take the dot product of u with the direction vector v v , which is the direc-
tion of v, and for the projection we go on to multiply the result by the direction vector.

EXAMPLE 5  Find the vector projection of u i j k6 3 2= + +  onto v i j k2 2= − −  
and the scalar component of u in the direction of v.

Solution We find uprojv  from Equation (1):

u u v
v

v u v
v v

v i j k

i j k i j k

proj 6 6 4
1 4 4

2 2

4
9

2 2 4
9

8
9

8
9

.

v 2
( )

( )

= ⋅ = ⋅
⋅

= − −
+ +

− −

= − − − = − + +

We find the scalar component of u in the direction of v from Equation (2):

u u v
v

i j k i j kcos 6 3 2 1
3

2
3

2
3

2 2 4
3

4
3

.

θ ( )( )= ⋅ = + + ⋅ − −

= − − = −  

Equations (1) and (2) also apply to two-dimensional vectors. We demonstrate this in 
the next example.

EXAMPLE 6  Find the vector projection of a force F i j5 2= +  onto v i j3= −  
and the scalar component of F in the direction of v.

Solution The vector projection is

F F v
v

v F v
v v

v

i j i j

i j

proj

5 6
1 9

3 1
10

3

1
10

3
10

.

v 2( ) ( )
( ) ( )

= ⋅ = ⋅
⋅

= −
+

− = − −

= − +

The scalar component of F in the direction of v is

F F v
v

cos 5 6
1 9

1
10

.θ = ⋅ = −
+

= −  

EXAMPLE 7  Verify that the vector u uprojv−  is orthogonal to the projection vector 
uproj .v

Solution The vector u u v
v

vprojv 2( )= ⋅  is parallel to v. So it suffices to show that the 

vector u uprojv−  is orthogonal to v. We verify orthogonality by showing that the dot 
product of u uprojv− with v is zero:

u u v u v u v
v

v v

u v u v
v

v v

u v u v
v

v

u v u v

proj

0.

v 2

2

2
2

( )( )

( )

− ⋅ = ⋅ − ⋅ ⋅

= ⋅ − ⋅ ⋅

= ⋅ − ⋅

= ⋅ − ⋅ =  

Definition of uprojv

Dot product property (2)

v v v 2⋅ =
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Example 7 verifies that the vector u uprojv−  is orthogonal to the projection vector 
uprojv  (which has the same direction as v). So the equation

u u u u u v
v

v u u v
v

vproj projv v 2 2( ) ( )( )( )= + − = ⋅ + − ⋅

expresses u as a sum of orthogonal vectors (see Figure 12.27).

Work

In Chapter 6, we calculated the work done by a constant force of magnitude F  in moving 
an object through a distance d as W Fd.=  That formula holds only if the force is directed 
along the line of motion. If a force F moving an object through a displacement PQD

 
=  

has some other direction, the work is performed by the component of F in the direction of 
D. If θ is the angle between F and D (Figure 12.28), then

F

D
D

F D

F D

Work
scalar component of 

in the direction of 
length of 

cos

.

θ( )

( )=










=

= ⋅

FIGURE 12.27 The vector u is the  
sum of two perpendicular vectors: a  
vector uproj ,v  parallel to v, and a vector 
u uproj ,v−  perpendicular to v.

v

u

projvu

u − projvu

FIGURE 12.28 The work done by a 
constant force F  during a displacement D 
is F Dcos ,θ( )  which is the dot product 
F D.⋅

F

P QD

0F 0  cos u

u

DEFINITION The work done by a constant force F acting through a displacement 
PQD
 

=  is

W F D.= ⋅


vParallel to vOrthogonal to



EXAMPLE 8  If F 40 N=  (newtons), D 3 m,=  and 60 ,θ = °  the work done by 
F in acting from P to Q is

F D
F D

Work
cos

40 3 cos 60

120 1 2 60 J joules .

θ

( ) ( )

( )( )

( )

= ⋅
=

= °

= =  

We encounter more challenging work problems in Chapter 16 when we learn to find 
the work done by a variable force along a more general path in space.

The Dot Product of Two n-Dimensional Vectors

If = 〈 〉…u u uu , , , n1 2  and υ υ υ= 〈 〉…v , , , n1 2  are n-dimensional vectors, then we define 
the dot product to be

u u uu v .n n1 1 2 2υ υ υ⋅ = + + +

As for two- and three-dimensional vectors, the dot product is calculated by adding the 
products of the corresponding components of the two vectors.

This generalized dot product can be shown to satisfy the Properties of the Dot Product 
that were introduced earlier in this section, and similar terminology is used. If u and v are 
n-dimensional vectors, then

1. u and v are said to be orthogonal if u v 0⋅ = ,

2. the vector projection of u onto v is v u u v
v

vproj 2= ⋅ , and

Definition

Given values
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3. the angle between the vectors u and v is defined as u v
u v

arccosθ = ⋅





. (The Cauchy-

Schwarz inequality, u v u v⋅ ≤ , stated in Exercise 27 can be extended to  

n-dimensional vectors. This guarantees that u v
u v
⋅  is within the interval 1, 1[ ]− .)

EXAMPLE 9  An automobile assembly plant makes four different car models. The 
components of the vector u 36, 50, 24, 10= 〈 〉 indicate the plant’s output of each model 
per hour, whereas the revenue per vehicle (in US dollars) of each model is represented by 
the vector v 24,000, 31,000, 39,000, 52,000= 〈 〉. Calculate the dot product u v⋅  and 
explain the significance of the value that was obtained.

Solution 

u v 36 24,000 50 31,000 24 39,000 10 52,000 3,870,000.( )( ) ( )( ) ( )( ) ( )( )⋅ = + + + =

The value $3,870,000 represents the total hourly revenue. 

For some exercises, a calculator may be helpful when expressing 
answers in decimal form.

Dot Product and Projections
In Exercises 1–8, find

 a. v u v u,   ,  ⋅

 b. the cosine of the angle between v and u

 c. the scalar component of u in the direction of v

 d. the vector uproj .v

 1. v i j k u i j k2 4 5 , 2 4 5= − + = − + −

 2. v i k u i j3 5 4 5 , 5 12( ) ( )= + = +

 3. v i j k u j k10 11 2 , 3 4= + − = +

 4. v i j k u i j k2 10 11 , 2 2= + − = + +

 5. v j k u i j k5 3 ,= − = + +

 6. v i j u i j k, 2 3 2= − + = + +

 7. v i j u i j5 , 2 17= + = +

 8. v u1
2

,  1
3

, 1
2

,  1
3

= = −

Angle Between Vectors
Find the angles between the vectors in Exercises 9–12 to the nearest 
hundredth of a radian.

 9. u i j v i j k2 , 2= + = + −

 10. u i j k v i k2 2 , 3 4= − + = +

 11. u i j v i j k3 7 , 3 2= − = + −

 12. u i j k v i j k2 2 ,= + − = − + +

 13. Triangle Find the measures of the angles of the triangle whose 
vertices are A B1, 0 ,   2, 1 ,( ) ( )= − =  and C 1,  2 .( )= −

 14. Rectangle Find the measures of the angles between the diago-
nals of the rectangle whose vertices are A B1, 0 ,   0, 3 ,( ) ( )= =  
C 3, 4 ,( )=  and D 4, 1 .( )=

 15. Direction angles and direction cosines The direction angles 
,  ,α β  and γ of a vector a b cv i j k= + +  are defined as follows:

α is the angle between v and the positive x-axis 0 .α π( )≤ ≤

β  is the angle between v and the positive y-axis 0 .β π( )≤ ≤

γ is the angle between v and the positive z-axis 0 .γ π( )≤ ≤

y

z

x

v

0
b

a

g

 a. Show that

a b c
v v v

cos , cos , cos ,α β γ= = =

and cos cos cos 1.2 2 2α β γ+ + =  These cosines are called 
the direction cosines of v.

 b. Unit vectors are built from direction cosines Show that 
if a b cv i j k= + +  is a unit vector, then a, b, and c are the 
direction cosines of v.

 16. Water main construction A water main is to be constructed 
with a 20% grade in the north direction and a 10% grade in the 

EXERCISES 12.3
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east direction. Determine the angle θ required in the water main 
for the turn from north to east.

East

No
rth

u

For Exercises 17 and 18, find the acute angle between the given lines 
by using vectors parallel to the lines.

 17. y x y x, 2 3= = +

 18. x y x y2 2 0, 3 4 12− + = − = −

Theory and Examples

 19. Sums and differences In the accompanying figure, it looks as if 
v v1 2+  and v v1 2−  are orthogonal. Is this mere coincidence, or  
are there circumstances under which we may expect the sum of two 
vectors to be orthogonal to their difference? Give reasons for your 
answer.

v1 + v2

v1 − v2

v2

v1 −v2

 20. Orthogonality on a circle Suppose that AB is the diameter of 
a circle with center O and that C is a point on one of the two arcs 
joining A and B. Show that CA

 
 and CB
 

 are orthogonal.

B
O

v

A

C

u−u

 21. Diagonals of a rhombus Show that the diagonals of a rhombus 
(parallelogram with sides of equal length) are perpendicular.

 22. Perpendicular diagonals Show that squares are the only rect-
angles with perpendicular diagonals.

 23. When parallelograms are rectangles Prove that a parallelo-
gram is a rectangle if and only if its diagonals are equal in length. 
(This fact is often exploited by carpenters.)

 24. Diagonal of parallelogram Show that the indicated diagonal of 
the parallelogram determined by vectors u and v bisects the angle 
between u and v if u v .=

u

v

 25. Projectile motion A gun with muzzle velocity of 1200 ft sec 
is fired at an angle of 8° above the horizontal. Find the horizontal 
and vertical components of the velocity.

 26. Inclined plane Suppose that a box is being towed up an inclined 
plane as shown in the figure. Find the force w needed to make 
the component of the force parallel to the inclined plane equal to 
2.5 lb.

15°

33°

w

 27. a.  Cauchy-Schwarz inequality Since u v u v cos ,θ⋅ =   
show that the inequality u v u v⋅ ≤  holds for any  
vectors u and v.

 b. Under what circumstances, if any, does u v⋅  equal u v ? 
Give reasons for your answer.

 28. Dot multiplication is positive definite Show that dot multipli-
cation of vectors is positive definite; that is, show that u u 0⋅ ≥  
for every vector u and that u u 0⋅ =  if and only if u 0.=

 29. Orthogonal unit vectors If u1 and u 2 are orthogonal unit vectors 
and a bv u u ,1 2= +  find v u .1⋅

 30. Cancelation in dot products In real-number multiplication, if 
u u1 2υ υ=  and u 0,≠  we can cancel the u and conclude that 

.1 2υ υ=  Does the same rule hold for the dot product? That is, 
if u v u v1 2⋅ = ⋅  and u 0,≠  can you conclude that v v ?1 2=  
Give reasons for your answer.

 31. If u and v are orthogonal, show that uproj 0.v =

 32. A force F i j k2 3= + −  is applied to a spacecraft with velocity 
vector v i j3 .= −  Express F  as a sum of a vector parallel to v 
and a vector orthogonal to v.

Equations for Lines in the Plane

 33. Line perpendicular to a vector Show that a bv i j= +  is per-
pendicular to the line ax by c+ = . (Hint: For a and b nonzero, 
establish that the slope of the vector v is the negative reciprocal of 
the slope of the given line. Also verify the statement when a 0=  
or b 0= .)

 34. Line parallel to a vector Show that the vector a bv i j= +  
is parallel to the line bx ay c− = . (Hint: For a and b nonzero, 
establish that the slope of the line segment representing v is the 
same as the slope of the given line. Also verify the statement when 
a 0=  or b 0= .)

In Exercises 35–38, use the result of Exercise 33 to find an equation 
for the line through P perpendicular to v. Then sketch the line. Include 
v in your sketch as a vector starting at the origin.

 35. P v i j2, 1 , 2( ) = +  36. P v i j1, 2 , 2( )− = − −

 37. P v i j2,  7 , 2( )− − = − +  38. P v i j11, 10 , 2 3( ) = −

In Exercises 39–42, use the result of Exercise 34 to find an equation 
for the line through P parallel to v. Then sketch the line. Include v in 
your sketch as a vector starting at the origin.

 39. P v i j2, 1 ,( )− = −  40. P v i j0,  2 , 2 3( )− = +

 41. P v i j1, 2 , 2( ) = − −  42. P v i j1, 3 , 3 2( ) = −
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Work

 43. Work along a line Find the work done by a force F i5=  (mag-
nitude 5 N) in moving an object along the line from the origin to 
the point 1, 1( ) (distance in meters).

 44. Locomotive The Union Pacific’s Big Boy locomotive could 
pull 6000-ton trains with a tractive effort (pull) of 602,148 N 
(135,375 lb). At this level of effort, about how much work did 
Big Boy do on the (approximately straight) 605-km journey from 
San Francisco to Los Angeles?

 45. Inclined plane How much work does it take to slide a crate  
20 m along a loading dock by pulling on it with a 200-N force at 
an angle of 30° from the horizontal?

 46. Sailboat The wind passing over a boat’s sail exerted a 1000-lb 
magnitude force F  as shown here. How much work did the wind 
perform in moving the boat forward 1 mi? Answer in foot-pounds.

F

60°
1000-lb
magnitude
force

Angles Between Lines in the Plane
The acute angle between intersecting lines that do not cross at right 
angles is the same as the angle determined by vectors normal to the 
lines or by vectors parallel to the lines.

u

u

u

n1
n2

L2

L2

L1

L1
v1

v2

Use this fact and the results of Exercise 33 or 34 to find the acute 
angles between the lines in Exercises 47–52.

 47. x y x y3 5, 2 4+ = − =

 48. y x y x3 1, 3 2= − = − +

 49. x y x y3 2, 3 1− = − − =

 50. x y x y3 1, 1 3 1 3 8( ) ( )+ = − + + =

 51. x y x y3 4 3, 7− = − =

 52. x y x y12 5 1, 2 2 3+ = − =

Dot Products of n-Dimensional Vectors
In Exercises 53–56, (a) find u v⋅  and (b) determine whether the vectors 
u and v are orthogonal.

 53. u v3, 2,  4, 0 ,   1, 0, 0, 2= 〈 − 〉 = 〈 〉

 54. u v2, 1, 1, 2 ,   1, 2,  2,  1= 〈− 〉 = 〈− − − 〉

 55. u v6, 3, 0, 1,  2 ,   0, 2,  7, 0, 3= 〈 − 〉 = 〈 − 〉

 56. u v4, 2,  3,  2, 1, 5 ,   3,  3, 2,  2, 1,  1= 〈 − − 〉 = 〈 − − − 〉

FIGURE 12.29 The construction of 
u v.×
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DEFINITION The cross product u v×  (“u cross v”) is the vector

u v u v nsin   .θ( )× =

12.4 The Cross Product

In studying lines in the plane, when we needed to describe how a line was tilting, we used 
the notions of slope and angle of inclination. In space, we want a way to describe how a 
plane is tilting. We accomplish this by multiplying two vectors in the plane together to get 
a third vector perpendicular to the plane. The direction of this third vector tells us the 
“inclination” of the plane. The product we use to multiply the vectors together is the vector 
or cross product, the second of the two vector multiplication methods. The cross product 
gives us a simple way to find a variety of geometric quantities, including volumes, areas, 
and perpendicular vectors. We study the cross product in this section.

The Cross Product of Two Vectors in Space

We start with two nonzero vectors u and v in space. Two vectors are parallel if one is a 
nonzero multiple of the other. If u and v are not parallel, they determine a plane. The vec-
tors in this plane are linear combinations of u and v, so they can be written as a sum 
a bu v.+  We select the unit vector n perpendicular to the plane by the right-hand rule. 
This means that we choose n to be the unit normal vector that points the way your right 
thumb points when your fingers curl through the angle θ from u to v (Figure 12.29). Then 
we define a new vector as follows.


